Living High-Altitude Balloon

High-altitude balloons are used to perform experiments in “near space” at 60,000-120,000 ft. (18000-36000m). However, conditions at such altitude are not particularly friendly and balloons have to compete with ultraviolet radiation, bad weather and the troubles of long distance communication. The trick is to send up a live entity to make repairs as needed. A group of students from Stanford University and Brown University repurposed nature in their solution. Enter Bioballoon: a living high-altitude research balloon.

Instead of using inorganic materials, the Stanford-Brown International Genetically Engineered Machine (iGEM) team designed microbes that grow the components required to build various tools and structures with the hope of making sustained space research feasible. Being made of living material, Bioballoon can be grown and re-grown with the same bacteria, lowering the cost of manufacturing and improving repeatability.

Bioballoon is engineered to be modular, with different strains of bacteria satisfying different requirements. One strain of bacteria has been modified to produce hydrogen in order to inflate the balloon while the balloon itself is made of a natural Kevlar-latex mix created by other cells. Additionally, the team is using Melanin, the molecule responsible for skin color and our personal UV protection to introduce native UV resistance into the balloon’s structure. And, while the team won’t be deploying a glider, they’ve designed biological thermometers and small molecule sensors that can be grown on the balloon’s surface. They don’t have any logging functionality yet, but these cellular hacks could amalgamate as a novel scientific instrument: cheap, light and durable.

Living things too organic for your taste? Don’t worry, we’ve got some balloons that won’t grow on you.

Continue reading “Living High-Altitude Balloon”

High Altitude Glider Will Be Dropped From A Balloon!

[House4Hack] and [HABEX] have teamed up to design and build a glider system that can be taken up 30-40km via a weather balloon, dropped, and flown home via FPV.

Of course, this has been done before, but you know what, it’s such a cool experiment, and so few people have done it… who cares! The goal is to hit at least 20km altitude, hope for 30km, and if possible — 40km would break records. For reference, the one we linked made it 33km up.

The plane is a Mini-talon V-tail, which was donated to them by their local hobby shop as a sponsorship. It features an ArduPlane Autopilot module, a 1.2GHz video transmitter, a long range 433MHz receiver for the control signal, and a telemetry data link at 433MHz connected to the ArduPlane. Two GoPro cameras make up its eyes, and it also has a custom release mechanism for letting go of the weather balloon.

Continue reading “High Altitude Glider Will Be Dropped From A Balloon!”

High Altitude Photographic Balloon

[Earl Foster] recently completed his 4th high altitude photographic balloon (HAPB-4) launch. This launch reached a peak altitude of 106,384 feet, and lasted about 3 hours. The final weight of the capsule was 5lb 3-3/8 oz, with all the electronics, GPS, digital camera, and HD video camera. His balloons operate under the exempt rules of FAA Part 101 subpart a governing unmanned balloon flight. This program has been setup to encouraging interest in science, mathematics, and engineering through unmanned ballooning. HAPB-4 uses a Parallax SPIN Stamp microcontroller, this multicore chip offers eight 32-bit processors (cogs) sharing 32kB RAM and ROM. Having eight separate COG’s allows him to log GPS data, control the camera, log and monitor sensors, and control LCD functions simultaneously with minimal hardware. During this flight he did have some equipment failures, but he was still able to capture some nice pictures.

High Altitude Linux Weather Balloon

weather balloon

“i found it in my cow pasture, buried in the snow. i was riding my 4 wheeler.”  that’s what the postcard said when it returned to me after i sent it up with a helium balloon a couple weeks ago.  it traveled roughly 100 miles.

but i digress.

james meehan’s story began quite similarly, but he decided to take his balloon fascination to a much more fascinating and hackerly level.  follow the link to read about how he designed and constructed his linux powered weather balloon, complete with gps, packet radio uplink, and video camera.  he says it’s the coolest thing he’s ever done.  i can’t really vouch for what else he’s done, but this project is pretty darn cool.

when you’ve finished marvelling at this hack, make sure to also check out the home brew, high altitude glider we wrote about a while back.  i love this high altitude mischief.  if you know of similar projects, send ’em in!

Continue reading “High Altitude Linux Weather Balloon”

WSPR To The Wind With A Pi Pico High Altitiude Balloon

They say that if you love something, you should set it free. That doesn’t mean that you should spend any more on it than you have to though, which is why [EngineerGuy314] put together this Raspberry Pi Pico high-altitude balloon tracker that should only set you back about $12 to build.

This simplified package turns a Pico into a tracking beacon — connect a cheap GPS module and solar panel, and the system will transmit the GPS location, system temperature, and other telemetry on the 20-meter band using the Weak Signal Propagation Reporter (WSPR) protocol. Do it right, and you can track your balloon as it goes around the world.

The project is based in part on the work of [Roman Piksayin] in his Pico-WSPR-TX package (which we covered before), which uses the Pico’s outputs to create the transmitted signal directly without needing an external radio. [EngineerGuy314] took this a step further by slowing down the Pico and doing some clever stuff to make it run a bit more reliably directly from the solar panel.

The system can be a bit fussy about power when starting up: if the voltage from the solar panel ramps up too slowly, the Pico can crash when it and the GPS chip both start when the sun rises. So, a voltage divider ties into the run pin of the Pico to keep it from booting until the voltage is high enough, and a single transistor stops the GPS from starting up until the Pico signals it to go.

It’s a neat hack that seems to work well: [EngineerGuy314] has launched three prototypes so far, the last of which traveled over 62,000 kilometers/ 38,000 miles.

Parachute Drops Are Still A Viable Solution For Data Recovery From High Altitude Missions

Once upon a time, when the earliest spy satellites were developed, there wasn’t an easy way to send high-quality image data over the air. The satellites would capture images on film and dump out cartridges back to earth with parachutes that would be recovered by military planes.

It all sounds so archaic, so Rube Goldberg, so 1957. And yet, it’s still a viable method for recovering big globs of data from high altitude missions today. Really, you ask? Oh, yes indeed—why, NASA’s gotten back into the habit just recently!

Continue reading “Parachute Drops Are Still A Viable Solution For Data Recovery From High Altitude Missions”

Balloon To Fly During Solar Eclipse

The Great American Eclipse was a solar eclipse that passed nearly the entire continental United States back in 2017. While it might sound like a once-in-a-lifetime event to experience a total solar eclipse, the stars have aligned to bring another total solar eclipse to North America although with a slightly different path stretching from the west coast of Mexico and ending off the cost of Newfoundland in Canada. Plenty of people near the path of totality have already made plans to view the event, but [Stephen] and a team of volunteers have done a little bit of extra preparation and plan to launch a high-altitude balloon during the event.

The unmanned balloon will primarily be carrying a solar telescope with the required systems onboard to stream its images live during its flight. The balloon will make its way to the stratosphere, hopefully above any clouds that are common in New Brunswick during the early spring, flying up to 30,000 meters before returning its payload safely to Earth. The telescope will return magnified images of the solar eclipse live to viewers on the ground and has been in development for over two years at this point. The team believes it to be the first time a non-governmental organization has imaged an eclipse by balloon.

For those who have never experienced a total solar eclipse before, it’s definitely something worth traveling for if you’re not already in its path. For this one, Canadians will need to find themselves in the Maritimes or Newfoundland or head south to the eastern half of the United States with the Americans, while anyone in Mexico needs to be in the central part of the mainland. Eclipses happen in places other than North America too, and are generally rare enough that you’ll hear about a total eclipse well in advance. There’s more to eclipses than watching the moon’s shadow pass by, though. NASA expects changes in the ionosphere and is asking ham radio operators for help for the 2024 eclipse.