RGV Laser

[Carl] sure has come a long way with laser modifications, now introducing his portable RGV Full Colour Laser. Although it feels just like yesterday when he showed us his green spiro and his Lego diffraction grating projector.

But enough of the past, the RGV laser is built using a White Fusion Mixing Kit and his own Full Colour Driver Extension. We couldn’t find any circuit diagrams or code to build your own at the moment, but it appears fairly straight forward and you can always take a look at [c4r0’s] Colour Laser.

PicAxe LEGO Tank

[TomTheGeek] built a LEGO tank with a PicAxe controller. Locomotion is supplied by a Lego Power Function motor controller. He cut an LPF extension wire in half so that he could patch into the PWM signals without altering the motors themselves. You can make out the control circuitry and a small breadboard in the tank’s turret. [Tom] added a laser pointer to the tip of the barrel but we’d like to see an IR LED. The tank is controlled by a infrared remote control and adding TV-b-gone functionality to the toy would create something of a Rube Goldberg feature for turning off the tube. But alas, there’s no programming space left for that as the PicAxe 08M is limited to 256 bytes.

There’s a video after the break of this little demon tracking its way around the room. This is a nice addition to the other LEGO tank we saw a while back.

Continue reading “PicAxe LEGO Tank”

Lego Spider-bot

[MkMan’s] LEGO spider robot combines pieces from a Mindstorm kit with a few milled plastic parts. The legs are a locomotive concept called a Klann Linkage. They operate in pairs and convert the rotational force from one motor into movement for two legs. Here, a total of four rotating gears moves eight legs, besting the hexapods we saw a couple of weeks ago in both leg count and motor economy.

Each limb is made up of five pieces plus one base for each pair. That makes eleven pieces per pair and a total of 44 for the entire robot. [MkMan] milled these parts out of 3/8″ HDPE stock. He’s made videos of forward motion and turning which we’ve embedded after the break. Even on a polished surface the bot looks fairly efficient at getting around.

Continue reading “Lego Spider-bot”

Building Robots With A 20×20 Grid

On autonomous robots, the most difficult challenges usually lie in the software and electronic realms, but the mechanics can also be very time consuming. To help address this challenge, [Nikodem Bartnik] is working on the Open Robotic Platform (ORP), a modular robotics chassis system designed to make prototyping as easy and affordable as possible. Video after the break.

The ORP is governed by a set of design rules to maintain interchangeability. Most of the design rules are very open, but the cornerstone of ORP is its standardized mounting plates featuring a 20 mm grid pattern of 3.5 mm mounting holes. These plates can be stacked using connecting rods, creating a versatile foundation upon which various components can be mounted.

[Nikodem] is on a mission to create and collect an entire library of these modular components. From custom 3D-printed holders that accommodate sensors, motors, wheels and dev boards to homemade PCBs that snap directly onto the chassis, everything to get your robot rolling as soon as possible. While manufacturing methods and materials are not limited, 3D printing and laser cutting will likely be the most popular manufacturing technologies for making your own parts.

Continue reading “Building Robots With A 20×20 Grid”

Hackaday Podcast Episode 254: AI, Hijack Guy, And Water Rockets Fly

This week Hackaday Editors Elliot Williams and Al Williams chew the fat about the Haier IOT problem, and all other top Hackaday stories of the week. Want to prove your prowess at C programming? Take a quiz! Or marvel at some hairy display reverse engineering or 3D-printed compressor screws. On the lighter side, there’s an immense water rocket.

After Al waxes nostalgic about the world of DOS Extenders and extended memory, the guys talk about detective work: First detecting AI-written material, and finally, a great detective story about using science to finally (maybe) crack the infamous DB Cooper hijacking case.

Follow along with the links below. Don’t forget to tell us what you think about this episode in the comments!

Here’s a string of bits containing the podcast that looks suspiciously like an MP3!

Continue reading “Hackaday Podcast Episode 254: AI, Hijack Guy, And Water Rockets Fly”

All I Want For Mr. Christmas Is Some New Music

It’s true — you really can find anything (except maybe LEGO) in thrift stores. When [thecowgoesmoo] picked up a Mr. Christmas Symphonium music box one day, they knew they wanted to make it play more than just the standard Christmas and classical fare that ships with the thing.

So they did what any self-respecting hacker would do, and they wrote a MATLAB script that generates new disk silhouette images that they then cut from cardboard with a laser cutter. They also used various other materials like a disposable cutting mat. Really, whatever is lying around that’s stiff enough and able to be cut should work. You know you want to hear Van Halen’s “Jump” coming from a tinkling music box, don’t you? Be sure to check out the video demonstration after the break.

If you don’t want to wait around until a Mr. Christmas lands in your lap, why not make your own hand-cranked music box and accompanying scores?

Continue reading “All I Want For Mr. Christmas Is Some New Music”

A ceiling-mounted model of the Solar System

Ceiling-Mounted Orrery Is An Excercise In Simplicity

Ever since humans figured out that planets move along predetermined paths in the heavens, they have tried to make models that can accurately predict their motion. Watchmakers and astronomers worked together to create orreries: mechanical contraptions that illustrate the positions of all planets and the way they move over time through complex gear systems. [Illusionmanager] continues the orrery tradition but uses a different approach: he built a beautiful ceiling-mounted model of our Solar System without a gearing system.

The mechanism that makes his Solar System tick is deceptively simple. All planets can move freely along their orbit’s axis except Mercury, which is moved along its orbit by a motor hidden inside the Sun. Once Mercury has completed a full revolution, a pin attached to its arm will begin pushing Venus along with it. After Venus has completed a full circle, its own pin will pick up Earth, and so on all the way to Neptune. Neptune is then advanced to its correct location as reported by NASA, after which Mercury’s motion is reversed and the whole procedure is repeated in the opposite direction to position Uranus.

Cycling through the entire Solar System in this way takes a long time, which is why the planets’ positions are only updated once a day at midnight. An ESP32, also hidden inside the Sun, connects to the internet to retrieve the correct positions for the day and drives the motor. The planet models, sourced from a museum shop, are hanging from thin aluminium tubes attached to wooden mounts made with a desktop CNC machine.

[Illusionmanager] made a detailed Instructables page showing the process of making a miniature version of the mechanism using just laser-cut wooden parts, as an update to a version we featured earlier. We really like the simplicity of this design, which stands in stark contrast to the huge gear trains used in more traditional orreries.

Continue reading “Ceiling-Mounted Orrery Is An Excercise In Simplicity”