Hackaday Prize Entry: Homebrew Smartwatches

The Pebble Smartwatch has been around for years, and the introduction of the Apple Watch has everyone looking at wrist-mounted computing as the newest gadget consumers can glom onto. There was never any doubt the 2015 Hackaday Prize would have more than a few smartwatches.

[Ramon]’s Zerowatch gets its name from the Arduino Zero, as this watch is based off of and completely compatible with the Arduino Zero. With a 48 MHz ARM Cortex M0+, a three-axis accelrometer, a microSD card slot, and a bright OLED display, this is an extremely capable wrist-mounted computer. As with all wearable electronics, the enclosure makes or breaks the entire device, and [Ramon] has a very slick 3D printed case for this watch.

Connectivity is important for smartwatches, and that’s something [Montassar]’s Open Source Smart Watch doesn’t skimp out on. He’s using an STM32F4 as the main controller and a 1.44″ TFT, and adding the standard Bluetooth module — an HC-05 — to the mix. [Montasar]’s project is also tackling connectivity by working on a few Android apps that connect directly to this phone. He’s using the MIT App Inventor to speed up development for these phone apps, and makes custom smartwatch apps a breeze.

Both are great projects, and thanks to free, open source, and easy to use tool chains, both projects are excellent examples of open hardware development and a great entry to The Hackaday Prize.

The 2015 Hackaday Prize is sponsored by:

It’s Time To Roll Your Own Smartwatch

Giant wristwatches are so hot right now. This is a good thing, because it means they’re available at many price points. Aim just low enough on the scale and you can have a pre-constructed chassis for building your own smartwatch. That’s exactly what [benhur] did, combining a GY-87 10-DOF module, an I²C OLED display, and an Arduino Pro Mini.

The watch uses one button to cycle through its different modes. Date and time are up first, naturally. The next screen shows the current temperature, altitude, and barometric pressure. Compass mode is after that, and then a readout showing your step count and kilocalories burned.

In previous iterations, the watch communicated over Bluetooth to Windows Phone, but it drew too much power. With each new hardware rev, [benhur] made significant strides in battery life, going from one hour to fourteen to a full twenty-fours.

Take the full tour of [benhur]’s smartwatch after the break. He’s open to ideas for the next generation, so share your insight with him in the comments. We’d like to see some kind of feedback system that tells us when we’ve been pounding away at the Model M for too long.  Continue reading “It’s Time To Roll Your Own Smartwatch”

Watch Those VOCs! Open Source Air Quality Monitor

Ever consider monitoring the air quality of your home? With the cost of sensors coming way down, it’s becoming easier and easier to build devices to monitor pretty much anything and everything. [AirBoxLab] just released open-source designs of an all-in-one indoor air quality monitor, and it looks pretty fantastic.

Capable of monitoring Volatile Organic Compounds (VOCs), basic particulate matter, carbon dioxide, temperature and humidity, it takes care of the basic metrics to measure the air quality of a room.

Exploded CAD View

All of the files you’ll need are shared freely on their GitHub, including their CAD — but what’s really awesome is reading back through their blog on the design and manufacturing process as they took this from an idea to a full fledged open-source device.

Did we mention you can add your own sensors quite easily? Extra ports for both I2C and analog sensors are available, making it a rather attractive expandable home sensor hub.

To keep the costs down on their kits, [AirBoxLab] relied heavily on laser cutting as a form of rapid manufacturing without the need for expensive tooling. The team also used some 3D printed parts. Looking at the finished device, we have to say, we’re impressed. It would look at home next to a Nest or Amazon Echo. Alternatively if you want to mess around with individual sensors and a Raspberry Pi by yourself, you could always make one of these instead.

Hackaday Prize Entry: New Firmware For A Smartwatch

Smartwatches are the next big thing. Nobody knows what we’re going to use them for, but that’s never stopped a product from being the hottest item around. The WeLoop Tommy isn’t the Apple Watch, it isn’t the Moto360, and it isn’t the Microsoft Band. It is, however, a nice smartwatch with a Sharp memory display and a battery that lasts longer than a few days. For his Hackaday Prize entry, [Krzysiek] is making an open source firmware for the WeLoop Tommy that will add capabilities no other smartwatch has.

This project is a complete reverse engineering of the WeLoop Tommy smartwatch. [Krzysiek] is tearing everything down to the bare components and figuring out how the RAM, Flash, buttons, LCD, and accelerometer connect to the processor. After that, it’s time for custom firmware.

Already [Krzysiek] has a test app that displays [OSSW] on the Sharp memory display. It’s not much, but the hardware is solid. With the right firmware, the WeLoop Tommy will be able to do just about everything an Android, Apple, or Microsoft smartwatche can do using repurposed hardware and open source firmware.

The 2015 Hackaday Prize is sponsored by:

Game And Watch

Give In To Nostalgia With A Retro Game And Watch

One of the earliest Nintendo products to gain popularity was the Game and Watch product line. Produced by Nintendo between 1980 and 1991, they are a source of nostalgia for many an 80s or 90s kid. These were those electronic handheld games that had pre-drawn monochrome images that would light up to make very basic animations. [Andrew] loved his old “Vermin” game as a kid, but eventually he sold it off. Wanting to re-live those childhood memories, he decided to build his own Game and Watch emulator.

The heart of [Andrew’s] build is a PIC18F4550 USB demo board he found on eBay. The board allows you to upload HEX files directly via USB using some simple front end software. [Andrew] wrote the code for his game in C using MPLAB. His device uses a Nokia 5110 LCD screen and is powered from a small lithium ion battery.

For the housing, [Andrew] started from another old handheld game that was about the right size. He gutted all of the old parts and stuck the new ones in their place. He also gave the housing a sort of brushed metal look using spray paint. The end result is a pretty good approximation of the original thing as evidenced by the video below. Continue reading “Give In To Nostalgia With A Retro Game And Watch”

Tearing Down The Apple Watch

The Apple Watch has been out for nearly a month now, but so far we haven’t seen a good look at the guts of this little metal bauble of electronic jewelry. Lucky for us that a company in China is hard at work poking around inside the Apple Watch and putting up a few incredible SEM images along the way (Google Translatrix).

This isn’t the first Apple Watch teardown that’s hit the intertubes – iFixit tore one apart with spudgers and tiny screwdrivers and found someone skilled in the ways of tiny parts could probably replace the battery in this watch. Shocking for an Apple product, really. iFixit also took a look at the watch with an x-ray, revealing a little bit of the high-level design of the Apple Watch, the Apple S1 computer on a chip, and how all the sensors inside this wearable work.

A side view of a 6-DOF IMU
A side view of a 6-DOF IMU

This teardown uses an incredible amount of very high-tech equipment to peer inside the Apple Watch. Because of this, it’s probably one of the best examples of showing how these tiny sensors actually work. With some very cool images, a 6-DOF IMU is revealed and the Knowles MEMS microphone is shown to be a relatively simple, if very small part.

Now the Apple S1, the tiny 26.15mm x 28.50mm computer on a chip, serves as the brains of the Apple Watch. It’s breathtakingly thin, only 1.16mm, but still handles all the processing in the device.

Even if you won’t be buying this electronic accessory, you’ve got to respect the amazing amount of engineering that went into this tiny metal bauble of semiconductors and sensors.

Enigma Machine Wristwatch

We don’t find smartwatches to be supremely usable yet. This one sets a definition for usefulness. The Enigma machine is of course the cipher process used by the Germans during World War II. This Enigma Machine wristwatch is not only functional, but the appearance is modelled after that of the original machine. With the speckled gray/black case and the Enigma badge branding [Asciimation] has done a fine job of mimicking the original feel.

Driving the machine is an Arduino Pro Mini. We’ve seen Arduino Enigma Machines in the past so it’s not surprising to see it again here. The user interface consists of an OLED display at 128×64 resolution, three buttons, with a charging port to the right and on/off switch on the left.

The device is demonstrated after the break. Quite a bit of button presses are used to set up each of the three encoder wheels. But that’s hardly avoidable when you’re not committing to a full keyboard. We’re pretty impressed by the functionality of [Asciimation’s] interface considering it’s hardware simplicity.

This seems perfect for kids that are proving to have an interest in engineering. They learn about ciphers, embedded programming, and mechanical design and crafting (this is a hand-sewn leather wristband). Of course if you build one and start wearing it into the office we won’t judge.

Continue reading “Enigma Machine Wristwatch”