Autodesk Moves EAGLE To Subscription Only Pricing

EAGLE user? We hope you like subscription fees.

Autodesk has announced that EAGLE is now only available for purchase as a subscription. Previous, users purchased EAGLE once, and used the software indefinitely (often for years) before deciding to move to a new version with another one-time purchase. Now, they’ll be paying Autodesk on a monthly or yearly basis.

Lets break down the costs. Before Autodesk purchased EAGLE from CadSoft, a Standard license would run you $69, paid once. The next level up was Premium, at $820, paid once. The new pricing tiers from Autodesk are a bit different. Standard will cost $15/month or $100/year, and gives similar functionality to the old Premium level, but with only 2 signal layers. If you need more layers, or more than 160 cm^2 of board space, you’ll need the new Premium level, at $65/month or $500/year.

New Subscription Pricing Table for Eagle
New Pricing Table for EAGLE

This is a bad deal for the pocket book of many users. If you could have made do with the old Standard option, you’re now paying $100/year instead of the one-time $69 payment. If you need more space or layers, you’ll likely be up to $500/year. Autodesk also killed the lower cost options for non-commercial use, what used to be a $169 version that was positioned for hobbyists.

The free version still exists, but for anyone using Eagle for commercial purposes (from Tindie sellers to engineering firms) this is a big change. Even if you agree with the new pricing, a subscription model means you never actually own the software. This model will require licensing software that needs to phone home periodically and can be killed remotely. If you need to look back at a design a few years from now, you better hope that your subscription is valid, that Autodesk is still running the license server, and that you have an active internet connection.

On the flip side of the coin, we can assume that Eagle was sold partly because the existing pricing model wasn’t doing all it should. Autodesk is justifying these changes with a promise of more frequent updates and features which will be included in all subscriptions. But sadly, Autodesk couldn’t admit that the new pricing has downsides for users:

“We know it’s not easy paying a lump sum for software updates every few years. It can be hard on your budget, and you never know when you need to have funds ready for the next upgrade.”

In their press release, they claim the move is only good for customers. Their marketing speak even makes the cliche comparison to the price of a coffee every day. Seriously.

[Garrett Mace] summarized his view on this nicely on Twitter: “previously paid $1591.21 for 88 months == $18.08/mo. Moving to $65/mo? KICAD looks better.”

We agree [Garrett]. KiCad has been improving steadily in the past years, and now is definitely a good time for EAGLE users to consider it before signing on to the Autodesk Subscription Plan™.

Steve Collins: When Things Go Wrong In Space

[Steve Collins] is a regular around Hackaday. He’s brought homebrew LIDARs to our regular meetups, he’s given a talk on a lifetime’s worth of hacking, and he is the owner of the most immaculate Hackaday t-shirt we’ve ever seen.

For the 2016 Hackaday SuperConference,  [Steve] took a break from his day job of driving spacecraft around the Solar System. As you can imagine, NASA plans on things going wrong. How do you plan for that? [Steve] answers all your questions by telling you what happens when things go wrong in space.

Continue reading “Steve Collins: When Things Go Wrong In Space”

Relay Computing

Recently, [Manuel] did a post on making logic gates out of anything. He mentioned a site about relay logic. While it is true that you can build logic gates using switch logic (that is, two switches in series are an AND gate and two in parallel are an OR gate), it isn’t the only way. If you are wiring a large circuit, there’s some benefit to having regular modules. A lot of computers based on discrete switching elements worked this way: you had a PCB that contained some number of a basic gate (say, a two input NAND gate) and then the logic was all in how you wired them together. And in this context, the SPDT relay was used as a two input multiplexer (or mux).

In case you think the relay should be relegated to the historical curiosity bin, you should know there are still applications where they are the best tool for the job. If you’re not convinced by normal macroscopic relays, there is some work going on to make microscopic relays in ICs. And even if they don’t use relays to do it, some FPGAs use mux-based logic inside.  So it’s worth your time to dig into the past and see how simply switching between two connections can make a computer.

Mux Mania

How do you go from a two input mux to an arbitrary logic gate? Simple, if you paid attention to the banner image. (Or try it interactive). The mux symbols show the inputs to the left, the output to the right and the select input at the bottom. If the select is zero, the “0” input becomes the output. If the select is one, the “1” input routes to the output.

Continue reading “Relay Computing”

3D Printer With Tilted Bed

[Oliver Tolar] and [Denis Herrmann], two students from the Zurich University of Applied Sciences (ZHAW), designed and produced a 3D printer prototype that has a movable printing bed that can tilt. By tilting, objects with critical overhangs can be printed without the additional support material. The printer has six axes, three axes control the print head as usual and three other axes control the printing bed, allowing a wider range of movements.

The students claim that besides saving on the support material this printer can actually save time while printing objects that need a lot of support since, we assume, it’s faster to tilt the bed than to print the support itself. In normal 3D printers the plate is always horizontal and the print object is built up in horizontal layers. In this printer, for large overhangs, the printing bed is held in such a way that the print object is pivoted until perpendicular to the print head. Of course, for round shapes it will probably be different but we only saw it in action in one demonstration video. There is also the plus side that, when a print finishes, it’s finished. No x-acto knife to remove support, no sand paper, no time wasted.

Having the software controlling the bed properly was more difficult than the assembly of the printer, they said. It is still under development as it cannot, for example, simultaneously move the print head and printing bed to produce a continuous print.

Continue reading “3D Printer With Tilted Bed”

Will Supercapacitors Ever Replace Batteries?

Recharging your mobile phone or your electric vehicle in a few minutes sure sounds appealing. Supercapacitor technology has the potential to deliver that kind of performance that batteries currently can’t, and while batteries are constantly improving, the pace of development is not very fast. Just remember your old Nokia mobile with Ni-Cad batteries and several days of usage before a recharge was needed. Today we have Lithium-Ion batteries and we have to charge our phones every single day. A better energy storage option is clearly needed, and supercapacitors seem to be the only technology that is close to replace the battery.

Continue reading “Will Supercapacitors Ever Replace Batteries?”

[Marla]’s New Arm

It is especially rare to see coverage in the mainstream media that involves a hackspace, so it was a pleasant surprise yesterday when the local TV news where this is being written covered a story that not only highlighted a hackspace’s work, but did so in a very positive light.

[Marla Trigwell] is a young girl from Newbury, UK, who was born without a left hand. She had been provided with prosthetics, but they aren’t cheap, and as a growing child she quickly left them behind. Her parents researched the problem as modern parents do, and found out about recent advances in 3D-printed prosthetics lowering the bar to access for those like [Marla] born without a limb. Last month [Marla] received her new 3D-printed arm, and she did so courtesy of the work of [Andrew Lindsay] at Newbury and District Hackspace.

The arm itself is a Team Unlimbited arm version 2.0 Alfie edition, which can be found on Thingiverse with full sizing instructions for adjusting to the recipient in Customizer. As the video below the break shows, [Marla] appears very pleased with it, and is soon mastering its ability to grip objects.

This story is a fantastic demonstration of the ability of a hackspace to be a force for good, a true community organisation. We applaud [Andrew], NADHack, and all involved with it for their work, and hope that 3D printed arms will keep [Marla] with a constant supply of comfortable and affordable prosthetics as she grows up.

Continue reading “[Marla]’s New Arm”

Print Flexible PCBs With A 3D Printer

Let’s get it out of the way right up front: you still need to etch the boards. However, [Mikey77] found that flexible plastic (Ninjaflex) will adhere to a bare copper board if the initial layer height is set just right. By printing on a thin piece of copper or conductive fabric, a resist layer forms. After that, it is just simple etching to create a PCB. [Mikey77] used ferric chloride, but other etchants ought to work, as well.

Sound simple, but as usual, the devil is in the details. [Mikey77] found that for some reason white Ninjaflex stuck best. The PCB has to be stuck totally flat to the bed, and he uses spray adhesive to do that. Just printing with flexible filament can be a challenge. You need a totally constrained filament path, for one thing.

Continue reading “Print Flexible PCBs With A 3D Printer”