Hackaday Podcast 243: Supercon, Super Printing, And Super Gyros

With solder fumes from Supercon still in the air, Hackaday’s Elliot Williams and Al Williams met to compare notes about the conference talks, badge hacking, and more. Tom Nardi dropped by, too.

Did you miss Supercon? It isn’t quite the whole experience, but most of the talks are on our YouTube channel, with more coming in the weeks ahead. Check out the live tab for most of the ones up now. You can even watch the badge hacking celebration. We’ll be writing up more in the following weeks.

Al nailed What’s That Sound, as did many others, except Elliot. [Jacx] gets a T-shirt, and you get a chance to play again next week.

The hacks this week range from a pair of posts pertaining to poop — multi-color 3D printer poop, that is. We wondered if you could print rainbow filament instead of a purge tower. The Raspberry Pi 5 draws a lot of excess power when in standby. Turns out, thanks to the Internet, the easy fix for that is already in. Other hacks range from EMI test gear to portable antennas with excursions into AI, biomedical sensors, and retrocomputing.

In the Can’t Miss category, we discussed Maya Posch’s post, which could just as easily be titled: Everything You Ever Wanted to Know about CAT Cable (But Were Afraid to Ask). Last, but not least, you’ll hear about Lewin Day’s round up of exotic gyroscope technology, including some very cool laser pictures.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download for listening or for a very long ringtone.

Continue reading “Hackaday Podcast 243: Supercon, Super Printing, And Super Gyros”

Synthesizing 360-degree Views From Single Source Images

ZeroNVS is one of those research projects that is rather more impressive than it may look at first glance. On one hand, the 3D reconstructions — we urge you to click that first link to see them — look a bit grainy and imperfect. But on the other hand, it was reconstructed using a single still image as an input.

Most results look great, but some — like this bike visible through a park bench — come out a bit strange. A valiant effort for a single-image input, all things considered.

How is this done? It’s NeRFs (neural radiance fields) which leverages machine learning, but with yet another new twist. Existing methods mainly focus on single objects and masked backgrounds, but a new approach makes this method applicable to a variety of complex, in-the-wild images without the need to train new models.

There are a ton of sample outputs on the project summary page that are worth a browse if you find this sort of thing at all interesting. Some of the 360 degree reconstructions look rough, some are impressive, and some are a bit amusing. For example indoor shots tend to reconstruct rooms that look good, but lack doorways.

There is a research paper for those seeking additional details and a GitHub repository for the code, but the implementation requires some significant hardware.

This Week In Security: Find My Keylogger, Zephyr, And Active Exploitation

Keyloggers. Such a simple concept — you secretly record all the characters typed on a keyboard, and sort through it later for interesting data. That keyboard sniffer could be done in software, but a really sneaky approach is to implement the keylogger in hardware. Hardware keyloggers present a unique problem. How do you get the data back to whoever’s listening? One creative solution is to use Apple’s “Find My” tracking system. And if that link won’t let you read the story, a creative solution for that issue is to load the page with javascript disabled.

This is based on earlier work from [Fabian Bräunlein], dubbed “Send My”. As an aside, this is the worst naming paradigm, and Apple should feel bad for it. At the heart of this cleverness is the fact that Apple used the standard Bluetooth Low Energy (BLE) radio protocol, and any BLE device can act like an Apple AirTag. Bits can be encoded into the reported public key of the fake AirTag, and the receiving side can do a lookup for the possible keys.

A fake AirTag keylogger manages to transfer 26 characters per second over the “Find My” system, enough to keep up with even the fastest of typists, given that no keyboard is in use all the time. Apple has rolled out anti-tracking protections, and the rolling key used to transmit data also happens to completely defeat those protections. Continue reading “This Week In Security: Find My Keylogger, Zephyr, And Active Exploitation”

Cheap Power Supplies With Fake Chips Might Not Be That Bad

We all know the old maxim: if it’s too good to be true, it’s probably made with fake components. OK, maybe that’s not exactly how it goes, but in our world gone a little crazy, there’s good reason to be skeptical of pretty much everything you buy. And when you pay the equivalent of less than a buck for a DC-DC converter, you get what you pay for.

Or do you? It’s not so clear after watching [Denki Otaku]’s video on a bargain bag of buck converters he got from Amazon — ¥1,290 for a lot of ten, or $0.85 a piece. The thing that got [Denki]’s Spidey senses tingling is the chip around which these boards were built: the LM2596. These aren’t especially cheap chips; Mouser lists them for about $5.00 each in a reel of 500.

Initial testing showed the converters, which are rated at 3 to 42 VDC in and 1.25 to 35 VDC out, actually seem to do a decent job. At least with output voltage, which stays at the set point over a wide range of input voltages. The ripple voltage, though, is an astonishing 400 mV — almost 10% of the desired 5.0 V output. What’s more, the ripple frequency is 18 kHz, which is far below the 150 kHz oscillator that’s supposed to be in the LM2596. Other modules from the batch tested at 53 kHz ripple, so better, but still not good. There were more telltales of chip fakery, such as dodgy-looking lettering on the package, incorrect lead forming, and finger-scorching heat under the rated 3 A maximum load. Counterfeit? Almost definitely. Useless? Surprisingly, probably not. Depending on your application, these might do the job just fine, especially if you slap a bigger cap on the output to smooth that ripple and keep the draw low. And keep your fingers away, of course.

Worried that your chips are counterfeits? Here’s a field guide for fake chip spotters. And what do you do if you get something fake? A refund might just be possible.

Continue reading “Cheap Power Supplies With Fake Chips Might Not Be That Bad”

Rendering of 6-unit NuScale VOYGR SMR plant.

Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities

Intended to be the first 6-unit deployment of NuScale’s 77 MW VOYGR small modular reactors (SMRs), the Carbon Free Power Project (CFPP) in Utah was scheduled to begin construction by 2025 on the grounds of the Idaho National Laboratory (INL), yet it has now been canceled by NuScale (press release) after not finding enough utilities interested in purchasing power from the nuclear plant. This led NuScale and UAMPS (Utah Associated Municipal Power Systems) to back out of the CFPP project.

To be clear, it seems this decision neither reflects on SMRs as a whole, nor NuScale’s prospects. Currently NuScale still has a number of projects which it is involved in, including the use of its SMR technology with the Polish copper and silver producer KGHM Polska Miedź SA. Demand for SMRs is also being flooded with various designs by both established and start-up companies, with TerraPower’s Natrium reactor seeing additional demand, including at the Kemmerer site in Wyoming.

Meanwhile, the European Commission is establishing an SMR Industrial Alliance, and countries like Norway are looking to build their first nuclear plants using SMRs, which includes Danish Seaborg’s molten salt reactor. In the end it should be clear that whether a singular infrastructure project works out economically or not depends on many factors. This can also be seen with e.g. wind farm projects, where Danish Ørsted canceled two large US offshore wind projects, Swedish Vattenfall abandoned its new British offshore wind project due to rising costs and Siemens Energy is having to borrow billions of Euros to patch up financial holes in its Spanish wind turbine unit.

Continue reading “Utah NuScale Nuclear Plant Project Canceled Due To Lack Of Interest From Utilities”

The Eyes Of The Basilisk Are Watching You

MIT student [Anhad Sawhney] built an interesting decoration for his dorm room corridor called The Eyes of the Basilisk. Named after the mythical creature with a deadly gaze, the project monitors passers-by using thermal cameras and an LED matrix.

The project uses a thermal camera and a 64 by 64 LCD panel, with an ESP32 taking the signal from the thermal camera and processing it to find the largest hot blob in the image, which is (probably) a person. The ESP32 then displays the pixel art basilisk eye image with the iris closest to the blob’s coordinates, updating once a second. With a bit of processing to make the eye appear more spherical, it is a pretty convincing trick.

Most might have built one (or two) of the devices on a breadboard and left it at that, but [Anhad] decided to use the project as a way to teach PCB fabrication to some friends, so they created a PCB that could be mounted onto the back of the LCD matrix and built 14 of them, using the pick & place machine that he had access to at the MIT Media Lab. They then mounted all of them on the wall of his dorm room so the wall appeared to keep track of anyone walking by. I’ve never met a Basilisk, so I don’t know how many eyes they have,  but it has a pretty creepy look as it watches you walking down the corridor.

Continue reading “The Eyes Of The Basilisk Are Watching You”

Fastest Semiconductor May Also Be Most Expensive

Scientists have found what they think may be the fastest known semiconductor. Sounds great, right? But it happens to made from one of the rarest elements: rhenium. That rare element combines with selenium and chlorine to form a “superatom.” Unlike conventional semiconductor material, the superatom causes phonons to bind together and resist scattering. This should allow materials that can process signals in femtoseconds,

Rhenium was the last stable element to be found in 1925. It is primarily used in combination with nickel in parts of jet engines, although it is also known as a catalyst for certain reactions. It is very rare and has a high melting point, exceeded only by tungsten and carbon. When it was discovered, scientists extracted a single gram of the material by processing 660 kg of molybdenite. Because of its rarity, it is expensive, costing anywhere from $2,800 to $10,600 per kilogram.

Continue reading “Fastest Semiconductor May Also Be Most Expensive”