Robotic Rock-paper-scissors Never Lets You Win

So robots kick our butts at tic-tac-toe, chess, Jeopardy, and now they’re the dominant species at rock-paper-scissors too. This robot arm will outmatch your at the game every single time. It’s not just fast enough to keep up, but it figures out what you’re planning to do and reacts according. All of this happens way to fast for you to catch it in the act.

Researchers at the University of Tokyo came up with the idea of combining high-speed vision with a high-speed hand. Apparently one millisecond is all it takes to analyze what move you’ve chosen. The time it takes for the hand to form the conquering position is only marginally longer than that. As you can see in the clip after the break, it already knows the protocol of 1-2-3 shoot and doesn’t need any operator intervention to start a new game, or repeatedly school you on trying to compete with a machine.

We’ve been beaten at the game by a machine before. This is just first time that the human player doesn’t need to wear special equipment and the machine has moved from a virtual hand to a physical one.

Continue reading “Robotic Rock-paper-scissors Never Lets You Win”

Making Flex Sensors On The Cheap

When [Michelle] was making a sign language translation glove, she needed a bunch of flex sensors. These flex sensors cost about $10 a pop, meaning her budget for the project was eaten up by these bendy potentiometers. Since then, [Michelle] figured out a great way to make extremely inexpensive bend sensors using anti-static bags and masking tape, allowing her to start her project once again.

The build works by sandwiching Velostat plastic bags – the same electrically conductive bags all your components arrive in – between layers of masking tape. A jumper wires is attached to a strip of Velostat attached to a piece of masking tape. Between two of these anti-static/masking tape assemblies, another piece of Velostat is placed. After laminating all these pieces together, [Michelle] had a primitive yet very functional flexible potentiometer.

After attaching one of these flex sensors to an analog input of her dev board of choice, she had a wonderful and inexpensive flexible sensor. You can check out this sensor in action after the break.

Continue reading “Making Flex Sensors On The Cheap”

BrainTap, Gaming With Arthritis In Mind

As a final project in their 3rd year of the University of Technology Sydney, [James] and a few classmates put together this interesting game. Called BrainTap, it is described as a game targeted at the baby boomers focusing on fine motor skills and memory.

The game plays similar to the common game “simon”. The box lights up a series of LEDs in a pattern, then you have to repeat the pattern back with the corresponding buttons in the glove. There is vibration feedback in the glove as well as the lights and sounds you see in the video. Though they do mention arthritis in their title, we don’t think our grandmas with arthritis would enjoy those hand motions much. We, however, might spend hours doing this instead of more important things.

We particularly like the visual construction of the game box. The case was designed in CAD, 3d printed, then sanded smooth and painted with automotive paint to get that perfect finish. Great job guys.

Continue reading “BrainTap, Gaming With Arthritis In Mind”

Remote Shutter Module Uses LCD Screen For Setup

Here’s a full-featured remote shutter project which [Pixel-K] just finished. It seems that he’s interested in taking time-lapse images of the cosmos. Since astrophotography happens outside at night, this presented some special design considerations. He wanted something that he could configure in the dark without zapping his night-vision too much. He also wanted it to be easily configured with a pair of gloves on.

The project enclosure is a 4x AA battery box. He removed the partitions between each cell, leaving plenty of room for the guts. Inside you’ll find a lithium battery and a micro-USB recharger board. It powers the Arduino mini pro which drives the 1.8″ LCD screen and actuates the optoisolator which is responsible for triggering the camera. On the right you can see the clear knob of the clickable rotary encoder. All of the user settings are chosen and selected using just this one knob.

He’s already tried it out on a 6-hour shoot and had no battery life problems or other issues.

Classic VW Bug Stereo Gets Bluetooth

If any of you deal with older car fanatics, you’ll know that the original dash stereo is a coveted piece of equipment. If they haven’t been removed and replaced with something more modern over the years, they’re usually non functional. [Hadrien] has gone through some trouble to retain his original stereo in his 69 Volkswagen Beetle. First, he did a common hack we see even in modern cars. He added an auxiliary input.

This satiated his desire for modern audio for a while, but he really found the necessity for a cable attachment annoying. He decided he was going to add bluetooth (google translated from french).  To do this, he took a pair of bluetooth headphones and tore them apart. Using an old cassette tape as the case, he rebuilt them as something that could be wired directly to his dash stereo. He even kept the mic just in case he wanted to use this as a hands free device.

Being build in 1969, his car stereo doesn’t use a cassette, so he just keeps it in the glove box. This isn’t optimal, but as he says, at least he doesn’t have to plug in his phone.

Modeling An Object With Internal IMUs

[Joseph Malloch] sent in a really cool video of him modeling a piece of foam twisting and turning in 3D space.

To translate the twists, bends, and turns of his piece of foam, [Joseph] used several inertial measurement units (IMUs) to track the shape of a deformable object. These IMUs consist of a 3-axis accelerometer, 3-axis gyroscope, and a 3-axis magnetometer to track their movement in 3D space. When these IMUs are placed along a deformable object, the data can be downloaded from a computer and the object can be reconstructed in virtual space.

This project comes from the fruitful minds at the Input Devices and Music Interaction Lab at McGill University in Montreal. While we’re not quite sure how modeled deformable objects could be used in a user interface, what use is a newborn baby? If you’ve got an idea of what this could be used for, drop a note in the comments. Maybe the Power Glove needs an update – an IMU-enabled jumpsuit that would put the Kinect to shame.

Continue reading “Modeling An Object With Internal IMUs”

Stop Motion Animation Creation

PVC man stop motion animation

Stop Motion Animation has always been interesting to me since I “discovered” that one could make animated flip books by drawing each frame a little different. Fast forward 20 years or so, and computer technology has gotten to the point where this sort of thing can be done electronically quite easily and at an incredibly low price of a camera, computer, and free or paid-for software (here’s the technique using GIMP, a free, good quality photo editing tool) to put everything together.

The frames in the picture above are of my latest [PVC man] animation, which can be made with some electroluminescent lights, gloves, and some PVC pipe.  Each frame was individually photographed, and after several hours of work we had enough footage for 17 seconds of so of stop-motion animation.

Although by no means perfect, the quality of these animations has gone up dramatically from the first animations that I made using an old ENV2 camera phone. Although I was using a “custom mount” for it, it’s amazing these came out as well as they did. As with everything hacking related, this process is a constant work in progress. Check out the videos after the break for the [PVC man] video as well as one of the early ENV2-produced stop-motion shorts!

Continue reading “Stop Motion Animation Creation”