Golden Commodore C64 Brings The Bling To 8-Bit Computing

Sometimes, a hack is just a hack. And sometimes, a hack is nothing but a gold-plated Commodore C64.

Alright, it’s not gold-plated, it’s gilded. For the uninitiated, gilding is the process of gluing gold powder or gold leaf to an object. Gold is amazingly ductile – a tiny nugget 5mm in diameter can be hammered into a sheet of gold leaf that can cover about a half a square meter. It’s extremely thin and delicate and has to be handled very gingerly, and the gilder’s craft is therefore very meticulous. For more on gilding, see this post on signmaking with gold leaf.

[thefuturewas8bit], who runs a vintage Commodore web store, did a great job gilding a C64 case, just because. The attention to detail is fantastic – notice that even the edges of the keyboard cutouts are gilded and burnished. A nice finishing touch is swapping out the stock red power LED for a yellow one – red simply clashes too much. Lest you think there’s nothing to learn from a purely aesthetic hack, [thefuturewas8bit] shares a great tip for removing the metal badges from a plastic case – spray them with freeze-spray from the back to pop off the glue. No need to dig at them with a screwdriver and gouge or bend them. Nice trick.

Any hack can earn extra points for style, and we think that gold works well on the C64.  But if gold is a little too overstated for you, you can always try to score a colorful new injection-molded case for your vintage Commodore.

Introducing The Nintendo Guitar Boy

Need to thrash out some wicked 8-bit riffs? There’s only one guitar you should be doing that with, and it’s a Guitar Boy!

[Fibbef], an administrator on BitFixGaming boards built this as an exhibition piece for his 2015 Game Boy Classic build off. He started the build just three months ago and we have to say we’re impressed. It’s a fully functioning Raspberry Pi Game Boy emulator — and a full fledged electric guitar. The A and B buttons double as volume and tone dials for the guitar, while also being push buttons for the Game Boy!

Under the hood is a Raspberry Pi B+ running RetroPie v2.3, with a 5″ LCD display, custom wooden buttons, the entire body is hand made, and a plexiglass shell covers the whole thing.

Continue reading “Introducing The Nintendo Guitar Boy”

Hackaday Prize Semifinalist: Walking Robots From Scratch

The usual way robotics is taught – and nearly everything, for that matter – is simple. A teacher gets a pre-built module or kit, teaches the students how to use the kit, and class is adjourned. There are significant and obvious drawbacks to this. [Kevin Harrington]’s entry for the Hackaday Prize turns that pedagogy on its head. It’s a robotics development platform that encourages everyone to create their own robots from scratch, starting with the question, ‘how many legs do you want your robot to have’.

Bowler Studio uses OpenCV for image processing, a kinematics engine, a JCSG-based CAD and 3D modeling engine to interface with motors, create 3D models according to kinematic models, feed imaging data to a robot, and create graphical interfaces for robots. It’s an entire robotics creation studio in a single package, and of course everything can be backed up to the cloud.

The electronic backbone is another one of [Kevin] and Neuron Robotics’ projects, DyIO, a USB peripheral that makes for a great robotics platform. The DyIO can control up to 24 servos, enough for a very, very complex robot, and also has the ability to control motors, read encoders, or just blink pins.

These two projects together make for a great way to learn the ins and outs of robots that are a little more complex than a simple wheeled robot, and expandable enough to make some really, really cool projects

The 2015 Hackaday Prize is sponsored by:

There’s A Bug In My Robot

What has six legs, 25 LEDs, a Microchip CPU, can be sewn into clothing, and even plugged into a Raspberry Pi? The answer, it turns out, is the CodeBug–a low cost computer board aimed at the educational market. These board were crowdfunded and are now available for general purchase. [Mike Redrobe] took one of the boards, connected a few servos and used the CodeBug’s Scratch-like language to create a small robot.

You can see the robot in the video below. Programs download via USB (the board looks like a USB drive). You can also send commands over USB to operate in tether mode, or you can directly plug the board into a Raspberry Pi.

Continue reading “There’s A Bug In My Robot”

Circular Saw + Innovative Fence = Unique DIY Table Saw

A table saw is often the first machine the aspiring woodworker wants for the shop. But even a lightweight contractor’s saw is not cheap, and a really good cabinet saw is both expensive and incredibly heavy. And any table saw is an intimidating machine that can liberate your fingers from your hand in a trice. Looking for a solution to all of these problems, [Seumas] has come up with a unique table saw conversion for a circular saw that improves safety and lowers the barrier to table saw ownership.

Flipping a low-cost circular saw upside down and attaching it to a table is old hat – we’ve seen plenty of examples of that before, including this recent post. Where [Seumas]’s idea shines is in the integration of the fence and the table. A typical fence needs to stay perfectly parallel to the blade while being dead square to the table, but still needs to be moved to adjust the width of cut. In [Seumas]’s design, the fence is fixed to the table, and the whole table slides left and right on high-pressure laminate rails. In theory, the fence will never go out of true, and the width of cut can be a lot wider than the typical table saw – an impressive 3 feet to the right of the blade.

As for safety, [Seumas] shows off quite a selection of DIY attachments in the video after the break. He builds his own Lexan blade guard, anti-kickback pawls, and stock hold-downs. Add in the little touches like shop-made clamps for locking the table, extending outfeed support, and built-in dust collection, and you can make yourself a pretty capable machine at the fraction of the cost of buying.

Continue reading “Circular Saw + Innovative Fence = Unique DIY Table Saw”

Hardware Virtualization In Microcontrollers

Look at any sufficiently advanced CNC machine or robot, and you’ll notice something peculiar. On one hand, you have a computer running a true operating system for higher-level processing, be it vision or speech recognition, or just connecting to the Internet. On the other hand, you have another computer responsible only for semi-real-time tasks, like moving motors, servos, and reading sensors and switches. You won’t be doing the heavy-lifting tasks with a microcontroller, and the Raspberry Pi is proof enough that real-time functions aren’t meant for a chip running Linux. There are many builds that would be best served with two processors, but that may be changing soon.

Microchip recently announced an addition to the PIC32 family of microcontrollers that will support hardware virtualization. This addition comes thanks to the MIPS M5150 Warrior-M processor, the first microcontroller to support hardware visualization.

Continue reading “Hardware Virtualization In Microcontrollers”

Tiny Headless Servers Everywhere

Quick, what do “cloud compute engines” and goofy Raspberry Pi Internet of Things hacks have in common? Aside from all being parody-worthy buzzword-fests, they all involve administering remote headless (Linux) installations. It’s for exactly that reason that a new Ubuntu distribution flavor, Ubuntu (Snappy) Core, targets both the multi-bazillion-dollar Amazon Elastic Compute Cloud and the $55 BeagleBone Black.

If that combination seems unlikely to you, you’re not alone. But read on as we hope to make a little more sense of it all.
Continue reading “Tiny Headless Servers Everywhere”