Hacking VGA For Trippy Video Effects

RGB.VGA.VOLT

Ever since flat panel LCD monitors came on the scene, most old CRTs have found their ways into the garbage or into the backs of closets. For this project, it might be a good idea to pull out the old monitor or TV out and dust it off! [James] has found a way to hack the VGA input to these devices to get them to display vivid visualizations based on an audio input.

The legacy hardware-based project is called RGB.VGA.VOLT and works by taking an audio signal as an input, crossing some wires, and sending the signal through a synthesizer. The circuit then creates a high-frequency waveform that works especially well for being displayed on VGA. The video can also be channeled back through an audio waveform generator to create a unique sound to go along with the brilliant colors.

[James]’s goals with this project are to generate an aesthetic feeling with his form of art and to encourage others to build upon his work. To that end, he has released the project under an open license, and the project is thoroughly documented on his project site.

There have been plenty of hacks in the past that have implemented other protocols with VGA or implemented VGA on microcontrollers, but none that have hacked the interface entirely to create something that looks like the Star Gate sequence from 2001: A Space Odyssey. We think it’s a great piece of modern art and a novel use of VGA!

Thanks for the tip, [Kyle]!

[Fran] on setting and regulating pocket watches

Retro Time Tech: [Fran] And Pocket Watches

Whether you own a pocket watch, want to own one, or just plain think they’re cool, [Fran’s] video on setting and regulating pocket watches provides a comprehensive overview on these beautiful works of mechanical art. After addressing the advantages and disadvantages between stem, lever, and key set watches, [Fran] cracks open her 1928 Illinois to reveal the internals and to demonstrate how to adjust the regulator.

Though she doesn’t dive into a full teardown, there’s plenty of identification and explanation of parts along the way. To slow her watch down a tad, [Fran] needed to turn a very tiny set screw about a quarter of a turn counterclockwise, slowing down the period: an adjustment that requires a fine jewelers screwdriver, a delicate touch, and a lot of patience. Results aren’t immediately discernible, either. It takes a day or two to observe whether the watch now keeps accurate time.

Stick around for the video after the jump, which also includes an in-depth look at a 1904 Elgin watch, its regulator and other key components.

Continue reading “Retro Time Tech: [Fran] And Pocket Watches”

Sprite Graphics Accelerator On An FPGA

A demo running on a FPGA sprite accelerator

Graphics accelerators move operations to hardware, where they can be executed much faster. This is what allows your Raspberry Pi to display high definition video decently. [Andy]’s latest build is a 2D sprite engine, featuring hardware accelerated graphics on an FPGA.

In the simplest mode, the sprite engine just passes commands through to the LCD. This allows for basic control. The fun part sprite mode, which allows for sprites to be loaded onto the FPGA. At that point, you can show, hide, and move the sprite. By overlapping many sprites, you something like the demo shown above.

The FPGA is from Xilinx, and uses their Block RAM IP to store the state of the sprites. The actual sprite data is contained on a 128 Mb external flash chip, since they require significant space.

The game logic runs on a STM32 Cortex M4 microcontroller which communicates with the FPGA and orders the sprites around. The FPGA then deals with generating frames and sending them to the LCD screen, freeing up the microcontroller.

If you’re wondering about the LCD itself, it’s 3.2″, 640 x 360, and taken from a Ericsson U5 Vivaz cellphone. [Andy] has a detailed writeup on reverse engineering it. After the break, he gives us a video overview of the whole system.

Continue reading “Sprite Graphics Accelerator On An FPGA”

Circuit Printer Doubles As A Pick And Place

Squink PCB printer and Pick and Place

Prototyping circuits is still a pain. The typical process is to order your PCBs, await their arrival, hand assemble a board, and start testing. It’s time consuming, and typically takes at least a week to go from design to prototype.

The folks at BotFactory are working on fixing that with the Squink (Kickstarter warning). This device not only prints PCBs, but also functions as a pick and place. Rather than using solder, the device uses conductive glue to affix components to the substrate.

This process also allows for a wide range of substrates. Traditional FR4 works, but glass and flexible substrates can work too. They’re also working on using an insulating ink for multilayer boards.

While there are PCB printers out there, and the home etching process always works, building the board is only half the battle. Hand assembly using smaller components is slow, and is prone to mistakes. If this device is sufficiently accurate, it could let us easily prototype complex packages such as BGAs, which are usually a pain.

Of course it has its limitations. The minimum trace width is 10 mils, which is a bit large. Also at $2600, this is an expensive device to buy sight unseen. While it is a Kickstarter, it’d be nice to see an all in one device that can prototype circuits quickly and cheaply.

Bubble Displays Are Increasing In Resolution

PipeDreams 3 bubble display

[Bruce] has created a pretty cool bubble display that is capable of showing recognizable photographs of people. This entire art installation is no slouch at 3-stories tall! This one resides at the Ontario Science Centre in Toronto, Canada. If you are unfamiliar with bubble displays, they consist of several clear vertical tubes filled with a liquid. A pneumatic solenoid valve mounted at the bottom of each tube allows a controlled amount of air to enter the tube at a very specific time. Since the air weighs less than the liquid, the air bubble travels up the tube of liquid. Interesting patterns can be made if these bubbles are timed correctly. This setup uses a Linux-based computer with custom control software to manipulate the valves.

[Bruce] didn’t start off making super-complex bubble displays. This is actually his 3rd go-around and with 96 individual tubes and capable of displaying raster images, it is the most complicated so far. His first creation consisted of 16 tubes, each larger in diameter than the most recent creation. With the larger diameter and less number of tubes came less resolution and the ability to only display simple shapes. Version 2 had twice as many tubes, 32 this time. In addition to doubling the tube quantity [Bruce] also colored the fluid in the tubes, not all the same color but all the colors of the rainbow, from red to violet. Still, this version could not show raster images. It appears to us that the third time’s the charm! Video after the break….

Continue reading “Bubble Displays Are Increasing In Resolution”

THP Entry: A 433MHz Packet Cloner

ookloneThe first generation of The Internet Of Things™ and Home Automation devices are out in the wild, and if there’s one question we can ask it’s, “why hasn’t anyone built a simple cracking device for them”. Never fear, because [texane] has your back with his cheap 433MHz OOK frame cloner.

A surprising number of the IoT and Home Automation devices on the market today use 433MHz radios, and for simplicity’s sake, most of them use OOK encoding. [Texane]’s entry for THP is a simple device with two buttons: one to record OOK frames, and a second to play them back.

Yes, this project can be replicated with fancy software defined radios, but [Texane]’s OOKlone costs an order of magnitude less than the (actually very awesome) HackRF SDR. He says he can build it for less than $20, and with further refinements to the project it could serve as a record and play swiss army knife for anything around 433MHz. Video demo of the device in action below.

Continue reading “THP Entry: A 433MHz Packet Cloner”

World’s Most Expensive Industrial Pipe Cover

Crystal LED Structure
It’s not hard to get HaD’s attention when you cram 1000’s of RGB LEDs into a single project. In fact, this funky crystal pipe has over 9000 of them!

The rather unique project was privately commissioned to cover up an exposed pipe in a new building. It seems like a bit of overkill to us, but the engineers at Asylum were more than excited to deliver. The pipe covering features 2,912 control modules for the RGB LEDs and are controlled by a dedicated Linux PC built into the installment. A website was created to allow the client to control the lights from any computer or mobile device.

Each crystal shard was individually glued to the surface (there’s around 3000 of them!) using UV hardening glue. It was a painstakingly slow process, but well worth the result as it looks like it’s out of Superman’s Fortress of Solitude!
Continue reading “World’s Most Expensive Industrial Pipe Cover”