Hackaday Prize Entry: A Fixation On Nitrogen

The reason we can feed six or seven billion people isn’t GMOs. It’s the massive increase in the use of fertilizers over the past hundred years. Most of the nitrogen-based fertilizers are produced using the Bosch-Haber process, a bit of chemical engineering that consumes one percent of all energy worldwide.

For his entry in the Hackaday Prize this year, [Peter Walsh] is improving the Bosch-Haber process, making the production of nitrogen simpler with less equipment.

The Bosch-Haber process runs at temperatures 400°C and pressures of about 200 atmospheres. Right now, this process is run in huge pressure vessels. [Peter]’s idea is to use ultrasonic cavitation to produce the same environment in equipment that can sit safely on a workbench.

[Peter]’s idea is inspired by sonoluminescence, a phenomenon seen when tiny bubbles in water implode producing light. It’s estimated that pressures and temperatures inside these imploding bubbles reach 2000 atmospheres and 5000°C – more than enough for the Bosch-Haber process. By injecting hydrogen and nitrogen into a machine that creates these sonoluminescent bubbles, ammonia will be created and turned into fertilizers to feed the planet.


The 2015 Hackaday Prize is sponsored by:

Vintage Computer Festival Europa 16.0: The Hackaday Report

The 16th annual Vintage Computer Festival Europa (VCFe) is still ongoing this weekend in Munich, and of course Hackaday had to swing by. If you’re anywhere in Germany, you’ve still got until Sunday at 16:30 to check it out.

DSCF7896The theme for this year’s festival is “The East is Red Colorful” and that means vintage computers from the other side of the Iron Curtain. Here in (West) Germany, that naturally means a good representation of computers from the former Democratic Republic of Germany (DDR), but Czechoslovakia, Yugoslavia, and of course Russia were also in the house. There was far too much going on to cover it all, but here’s a few of the projects and computers that caught our eye.

Continue reading “Vintage Computer Festival Europa 16.0: The Hackaday Report”

RoomMote home automation

RoomMote, A DIY Remote For Your Room Project

[Rohit] wrote in to tell us about a project he has created. Like most projects, his solves a problem. Sometimes while sleeping, a mosquito will infiltrate his room. He has a mosquito repellent machine but there are 2 problems, he has to get up to turn it on/off and it smells bad when in use. [Rohit] only needed a remote-controlled mosquito repelling machine but decided to make a 6 channel system he calls the RoomMote.

From the beginning, the plan was to use an old Sony TV remote to do the transmitting. The receiver unit was completely made from scratch. [Rohit] designed his own circuit around a surface mount MSP430 chip and made a really nice looking PCB to fit inside a project box he had kicking around. The MSP430 chip was programmed to turn relays on and off based on the signals received from the Sony remote.  These relays are inside an electrical box and control AC outlets. Just plug in your light, radio or mosquito repellent into the appropriate outlet for wireless control. Code for the MSP430 is made available on [Rohit’s] project page for anyone wanting to make something similar.

In addition to the relays, there is an RGB LED strip attached to the custom circuit board. By using more of the Sony remote’s buttons, the LED strip can output 6 pre-programmed colors, some mood lighting for the mosquitoes!

Continue reading “RoomMote, A DIY Remote For Your Room Project”

wireless reset button

Door Bell Used To Reset WiFi Router

We’ve all have had to reset our routers or modems at some point because they were acting up. The typical scenario is; unplug the device, wait 30 seconds, plug it back in and wait for it to boot back up. While not hard, this can be an annoyance, especially if accessing the router or power cord is inconvenient. [Taylor] wrote in to tell us about his wireless router that seems to need to be reset more than he’d like. Although the simplest solution may be to get a new router, he thought it would be fun to do something a little more exciting by making a wireless reset controller.

[Taylor] started with an ordinary power strip. He spliced in a relay to the hot side of the AC line, connected to the common and normally-closed pins of the relay. That way, when the relay is not activated, the power strip is powered. Next, a wireless doorbell was re-purposed to act as the transmitter and receiver. The speaker was removed and the output lines connected to a mono-stable 555 timer circuit that [Taylor] made. When the circuit receives a signal from the door bell speaker lines, it will activate the relay for about 30 seconds. Since the relay was wired to supply voltage to the power strip when not activated, activating the relay cuts the power for 30 seconds effectively resetting the router. Now, whenever the router needs a reset, doing so is as easy as pushing the door bell button from anywhere in the house.

An Exceptionally Small UV Sensor

Most of the hacks we see hitting the tip line are exactly that – hacked up hardware projects held together with hot glue and duct tape. [x-labs]’ entry for the 2015 Hackaday Prize, the UV badge, is certainly not one of these projects. It’s a professional one-off, capable of displaying the UV index, temperature, humidity, and pressure in one tiny little enclosure.

The UV badge is designed to be used outdoors. This means any old display ripped from a Nokia phone won’t do; that will wash out in the sun. Instead, [x-labs] is using a very sunlight-readable Sharp Memory LCD. A nice choice, as it’s an exceptionally low-power device.

Inside the 54 x 34 x 7.1 mm 3D printed enclosure is a very thin PCB, and all surface-mount components. The device is powered by a single coin cell battery that should give months of run time.

With a product designed so well, we’re wondering if the UV badge will be in the running for the Best Product category of the Hackaday Prize this year. There aren’t many projects in the running, and the winner gets a enough funding, machinery, and experience to turn their project into a product.


The 2015 Hackaday Prize is sponsored by:

Excruciating Quest Turns Chromebook Pixel IPS Into Exquisite Extra Monitor

[Shen] wanted an extra monitor at his desk, but not just any monitor. He wanted something particularly special and unquestionably refined. Like any super-power-possessing engineer he set out to scratch his hacking itch and was sucked into a multi-year extravaganza. For the love of everything hardware we’re glad this one came in on the weekend. If we had spent all that time drooling during a weekday we’d be so far behind.

The final product is a desktop monitor on an articulated arm. It features a Chromebook Pixel’s IPS display in a custom-crafted case everything. The journey started out with two different LCD units, the first from a Dell L502x replacement display using a generic LVDS board. The results were meh; washed out colors and obvious pixellation, with display adjustments that left [Shen] with a grimace on his mug. Installment two was an iPad Retina display. This iteration required spinning his own boards (resulting in [Shen’s] discovery of OSH Park). Alas, 9.7″ was too small coupled with short-cable-requirements making this version a no-go.

chromebook-pixel-ips-driver-boardAnd so we arrive at the meat and potatoes of this one. [Shen] identified the IPS LCD display on Google’s first Chromebook Pixel laptop as the object of his desire. The hack takes him through sourcing custom display cables, spinning rev after rev of his own board, and following Alice down the rabbit hole of mechanical design. Nothing marginal is good enough for [Shen], we discovered this with his project to get real audio out of a computer. He grinds away at the driver board, the case design, the control presentation, and everything else in the project until perfection was reached. This work of art will stand the test of time as a life fixture and not just an unappreciated workhorse.

This one is not to me missed. Head over to [Shen’s] project entry on Hackaday.io (don’t forget to give him a skull for this) and his blog linked at the top. We need to celebrate not only the people who can pull off such amazing work. But also the ones who do such a great job of sharing the story both for our enjoyment, and to inspire us.

Measuring Temperature On An AVR Without A Sensor

There are a few AVR microcontrollers with onboard temperature sensors. These temperature sensors are neither accurate nor precise, but they do work for a few use cases. [Thomas] came up with a little bit of code that runs on all AVR microcontrollers, and is at least as accurate as the sensors in the rare AVRs that have them.

Although not all AVRs have a temperature sensor, they do all have RC oscillators, and these RC oscillators are temperature sensitive. By combining the RC oscillator and watchdog timer, [Thomas]’ code can get a vague idea if it’s getting hotter or colder.

To prove his code works, [Thomas] took an ATtiny13A chip loaded up with a few bits of code and placed a heated coin on it. The chip was programmed to turn on an LED when it detected a rise in temperature, and predictably, the LED lit up. With a coin chilled in a bowl of ice water, another bit of code ran, flashing the LED.

While we’re sure it’s neither accurate nor precise, it does have its uses – overheating protection or a simple thermostat. You can check out a video of the code in action below.

Continue reading “Measuring Temperature On An AVR Without A Sensor”