Be More Axolotl: How Humans May One Day Regrow Limbs And Organs

Although often glossed over, the human liver is a pretty amazing organ. Not just because it’s pretty much the sole thing that prevents our food from killing us, but also because it’s the only organ in our body that is capable of significant regeneration. This is a major boon in medicine, as you can remove most of a person’s liver and it’ll happily regrow back to its original volume. Obviously this is very convenient in the case of disease or when performing a liver transplant.

Despite tissue regeneration being very common among animals, most mammalian species have only limited regenerative ability. This means that while some species can easily regrow entire limbs and organs including eyes as well as parts of their brain, us humans and our primate cousins are lucky if we can even count on our liver to do that thing, while limbs and eyes are lost forever.

This raises many questions, including whether the deactivation of regenerative capabilities is just an evolutionary glitch, and how easily we might be able to turn it back on.

Continue reading “Be More Axolotl: How Humans May One Day Regrow Limbs And Organs”

Learn Computing? Head For MonTana!

We’ve often thought that it must be harder than ever to learn about computers. Every year, there’s more to learn, so instead of making the gentle slope from college mainframe, to Commodore 64, to IBM PC, to NVidia supercomputer, you have to start at the end. But, really, you don’t. You can always emulate computers from simpler times, and even if you don’t need to, it can be a lot of fun.

That’s the idea behind the MonTana mini-computer. It combines “…ideas from the PDP-11, MIPS, Scott CPU, Game Boy, and JVM to make a relatively simple 16-bit computer…”

The computer runs on Java, so you can try it nearly anywhere. The console is accessed through a web browser and displays views of memory, registers, and even something that resembles a Game Boy screen. You’ll need to use assembly language until you write your own high-level language (we’d suggest Forth). There is, however, a simple operating system, MTOS.

This is clearly made for use in a classroom, and we’d love to teach a class around a computer like this. The whole thing reminds us of a 16-bit computer like the PDP-11 where everything is a two-byte word. There are only 4K bytes of memory (so 2K words). However, you can accomplish a great deal in that limited space. Thanks to the MTOS API, you don’t have to worry about writing text to the screen and other trivia.

It looks like fun. Let us know what you’ll use it for. If you want to go down a level, try CARDIAC. Or skip ahead a little, and teach kids QBasic.

A History Of Pong

Today, creating a ground-breaking video game is akin to making a movie. You need a story, graphic artists, music, and more. But until the middle of the 20th century, there were no video games. While several games can claim to be the “first” electronic or video game, one is cemented in our collective memory as the first one we’d heard of: Pong.

The truth is, Pong wasn’t the first video game. We suspect that many people might have had the idea, but Ralph Baer is most associated with inventing a practical video game. As a young engineer in 1951, he tried to convince his company to invest in games that you could play on your TV set. They didn’t like the idea, but Ralph would remember the concept and act on it over a decade later.

But was it really the first time anyone had thought of it? Perhaps not. Thomas Goldsmith Jr. and Estle Ray Mann filed a patent in 1947 for a game that simulated launching missiles at targets with an oscilloscope display. The box took eight tubes and, being an oscilloscope, was a vector graphic device. The targets were physical dots on a screen overlay. These “amusement devices” were very expensive, and they only produced handmade prototypes.

Continue reading “A History Of Pong”

Wayland Will Never Be Ready For Every X11 User

After more than forty years, everyone knows that it’s time to retire the X Window System – X11 for short – on account of it being old and decrepit. Or at least that’s what the common narrative is, because if you dig into the chatter surrounding the ongoing transition there are some real issues that people have with the 16-year old spring chicken – called Wayland – that’s supposed to replace it.

Recently [Brodie Robertson] did some polling and soliciting commentary from the community, breaking down the results from over 1,150 comments to the YouTube community post alone.

The issues range from the expected, such as applications that haven’t been ported yet from X11 to Wayland, to compatibility issues – such as failing drag and drop – when running X11 and Wayland applications side by side. Things get worse when support for older hardware, like GeForce GT610 and GT710 GPUs, and increased resource usage by Wayland are considered.

From there it continues with the lack of global hotkeys in Wayland, graphics tablet support issues, OBS not supporting embedded browser windows, Japanese and other foreign as well as onscreen keyboard support issues that are somehow worse than on X11, no support for overscanning monitors or multiple mouse cursors, no multi-monitor fullscreen option, regressions with accessibility, inability of applications to set their (previously saved) window position, no real automation alternative for xdotool, lacking BSD support and worse input latency with gaming.

Some users also simply say that they do not care about Wayland either way as it offers no new features they want. Finally [Brodie] raises the issue of the Wayland developers not simply following standards set by the Windows and MacOS desktops, something which among other issues has been a point of hotly debated contention for years.

Even if Wayland does end up succeeding X11, the one point that many people seem to agree on is that just because X11 is pretty terrible right now, this doesn’t automatically make Wayland the better option. Maybe in hindsight Mir was the better choice we had before it pivoted to Wayland.

Continue reading “Wayland Will Never Be Ready For Every X11 User”

Commodore 64 On New FPGA

When it comes to getting retro hardware running again, there are many approaches. On one hand, the easiest path could be to emulate the hardware on something modern, using nothing but software to bring it back to life. On the other, many prefer to restore the original hardware itself and make sure everything is exactly as it was when it was new. A middle way exists, though, thanks to the widespread adoption of FPGAs which allow for programmable hardware emulation and [Jo] has come up with a new implementation of the Commodore 64 by taking this path.

The project is called the VIC64-T9K and is meant as a proof-of-concept that can run the Commodore 64’s VIC-II video chip alongside a 6502 CPU on the inexpensive Tang Nano 9k FPGA. Taking inspiration from the C64_MiSTer project, another FPGA implementation of the C64 based on the DE10-Nano FPGA, it doesn’t implement everything an original Commodore system would have had, but it does provide most of the core hardware needed to run a system. The project supports HDMI video with a custom kernel, and [Jo] has used it to get a few demos running including sprite animations.

Built with a mix of Verilog and VHDL, it was designed as a learning tool for [Jo] to experiment with the retro hardware, and also brings a more affordable FPGA board to the table for Commodore enthusiasts. If you’re in the market for something with more of the original look and feel of the Commodore 64, though, this project uses the original case and keyboard while still using an FPGA recreation for the core of the computer.

Experience Other Planets With The Gravity Simulator

As Earthlings, most of us don’t spend a lot of extra time thinking about the gravity on our home planet. Instead, we go about our days only occasionally dropping things or tripping over furniture but largely attending to other matters of more consequence. When humans visit other worlds, though, there’s a lot more consideration of the gravity and its effects on how humans live and many different ways of training for going to places like the Moon or Mars. This gravity simulator, for example, lets anyone experience what it would be like to balance an object anywhere with different gravity from Earth’s.

The simulator itself largely consists of a row of about 60 NeoPixels, spread out in a line along a length of lightweight PVC pipe. They’re controlled by an Arduino Nano which has a built-in inertial measurement unit, allowing it to sense the angle the pipe is being held at as well as making determinations about its movement. A set of LEDs on the NeoPixel strip is illuminated, which simulates a ball being balanced on this pipe, and motion one way or the other will allow the ball to travel back and forth along its length. With the Earth gravity setting this is fairly intuitive but when the gravity simulation is turned up for heavier planets or turned down for lighter ones the experience changes dramatically. Most of the video explains the math behind determining the effects of a rolling ball in each of these environments, which is worth taking a look at on its own.

While the device obviously can’t change the mass or the force of gravity by pressing a button, it’s a unique way to experience and feel what a small part of existence on another world might be like. With enough budget available there are certainly other ways of providing training for other amounts of gravity like parabolic flights or buoyancy tanks, although one of the other more affordable ways of doing this for laypeople is this low-gravity acrobatic device.

Continue reading “Experience Other Planets With The Gravity Simulator”

The Power-Free Tag Emulator

Most of you know how an NFC tag works. The reader creates an RF field that has enough energy to power the electronics in the tag; when the tag wakes up, two-way communication ensues. We’re accustomed to blank tags that can be reprogrammed, and devices like the Flipper Zero that can emulate a tag. In between those two is [MCUer]’s power-free tag emulator, a board which uses NFC receiver hardware to power a small microcontroller that can run emulation code.

The microcontroller in question is the low-power CW32L010 from Wuhan Xinyuan Semiconductor, a Chinese part with an ARM Cortex M0+ on board. Unfortunately, that’s where the interesting news ends, because all we can glean from the GitHub repository is a PCB layout. Not even a circuit diagram, which we hope is an unintended omission rather than deliberate. It does, however, lend itself to the fostering of ideas, because if this designer can’t furnish a schematic, then perhaps you can. It’s not difficult to make an NFC receiver, so perhaps you can hook one up to a microcontroller and be the one who shares the circuit.