A Very Tidy Handheld Pi Terminal Indeed

As single board computers have become ever smaller and more powerful, so have those experimenting with them tried to push the boundaries of the machines they can be used in. First we had cyberdecks, and now we have handheld terminals. Of this latter class we have a particularly nice example from [Random Alley Cat]. It takes a Raspberry Pi Zero 2W and a handful of other parts, and makes them with a 3D printed case into something very professional indeed.

One of the problems with these designs has always been tidily packing away all the parts with their cables, and it’s one she solves by making a chassis to hold all the parts, and a case which fits around that. In a stroke the case no longer has to provide a dual function, allowing for a much easier internal layout. Her screen is a Pimoroni Hyperpixel, the keyboard is an Xbox 360 accessory, and the power supply is an off the shelf Pi UPS board and battery.

We particularly like the accesses on the underside of this machine to access the Pi ports, and the ventilation holes and external case details. It’s not perfect, as she says in the video below it’s not the best Linux keyboard. but we could really see ourselves using this.

If you follow handheld cyberdecks, we have a few treats for you on these pages. Not all of them run Linux, for example.

Continue reading “A Very Tidy Handheld Pi Terminal Indeed”

Game Boy Camera In Wedding Photo Booth

For those of a certain age the first digital camera many of us experienced was the Game Boy Camera, an add-on for the original Game Boy console. Although it only took pictures with the limited 4-tone monochrome graphics of this system, its capability of being able to take a picture, edit it, create drawings, and then print them out on the Game Boy Printer was revolutionary for the time. Of course the people who grew up with this hardware are about the age to be getting married now (or well beyond), so [Sebastian] capitalized on the nostalgia for it with this wedding photo booth that takes pictures with the Game Boy Camera.

The photo booth features the eponymous Game Boy Camera front-and-center, with a pair of large buttons to allow the wedding guests to start the photography process. The system takes video and then isolates a few still images from it to be printed with the Game Boy Printer. The original Game Boy hardware, as well as a Flask-based web app with a GUI, is all controlled with a Raspberry Pi 4. There’s also a piece of Game Boy hardware called the GB Interceptor that sits between the Game Boy console and the camera cartridge itself which allows the Pi to capture the video feed directly.

The booth doesn’t stop with Game Boy hardware, though. There’s also a modern mirrorless digital camera set up in the booth alongside the Game Boy Camera which allows for higher resolution, full color images to be taken as well. This is also controlled with the same hardware and provides a more modern photo booth experience next to the nostalgic one provided by the Game Boy. There have been many projects which attempt to modernize this hardware, though, like this build which adds color to the original monochrome photos or this one which adds Wi-Fi capability.

Continue reading “Game Boy Camera In Wedding Photo Booth”

A Cable Modem, The Way All Network Gear Should Be Mounted

Home routers and cable modems are now extremely powerful devices, but they all suffer from the attention of their manufacturers’ design and marketing departments. Instead of neatly packaging them in functional cases, they impose aesthetics and corporate identity on them, usually resulting in a curvy plastic case that’s difficult to integrate with other network infrastructure. [The Eccentric Workshop] did something about this with their new Arris modem, by creating a new 19″ rack mount for it.

Unusually for such a device, the plastic case was easy to dismantle. There’s a PCB inside, and a light guide for its LEDs. A new lower-half case and light guide were designed and 3D printed, and the whole was then mounted in a 1U rack case. The special part of this hack perhaps lies in the front panel, a very professionally cut and laser etched affair complete with an Arris logo as though it were meant to be this way.

We also like having our infrastructure and other things in a rack here at Hackaday, and fondly remember the days when some surprisingly affordable boxes came with metal wings for rack mounting. It’s always possible to use a rack tray, but something like this is so much more attractive.

A Non-Sony Playstation Motherboard Replacement

As hardware ages, it becomes harder and harder to keep it in service. Whether that’s because of physical aging or lack of support from the company who built it in the first place, time is not generally good for electronics, especially when it comes to our beloved retro gaming systems. The first Playstation, for example, is starting to see some of the deleterious effects of having originally been built in the 90s, and [LorentioB] has a new, third-party motherboard to bring to the table to keep these systems online as well as adding some features in that Sony removed.

The motherboard is known as the nsOne, meaning Not Sony’s One since this is the first motherboard built by a single person outside of Sony. It’s not based on any FPGAs or emulators and is completely compatible with all of the original hardware, chips, and other circuitry of the original Playstation. Based on the PU-23 series, it even revives the removed parallel port, which Sony removed after the first versions of the hardware because of region locking concerns and other pro-consumer issues. Every chip footprint and connector was reverse engineered manually, using optical sanding, scanning, and net-by-net tracing.

For such a complex piece of hardware this is quite the feat, and for anyone who wants to restore old hardware or add the parallel port back on to their system this could be a game changer. [LorentioB] is not quite finished yet but hopes to have a finished version shortly. As far as fully opening up the system goes, there are some software hacks to look at that allow more games to run on the system and some hardware hacks that open the system up as well.

2025 One-Hertz Challenge: Shadow Clock

You can buy all kinds of conventional clocks that have hands and numbers for easy reading. Or, like [Fabio Ricci], you could build yourself something a little more esoteric, like this neat shadow clock.

The heart of the build is an ESP8266 microcontroller, which gets the current time via Wi-Fi by querying an NTP time server. It also uses a DS3231 real-time clock module as a backup, keeping accurate time even when a network connection is unavailable.

Time is displayed via a 60-pixel ring of WS2812B addressable LEDs. These 60 LEDs correspond to the usual per-minute graduations that you would find on a regular clock. Current hour is displayed by lighting the corresponding LED red, while minutes are shown in blue and seconds in white. It’s called a “shadow clock” because of its method of activation. IR distance sensors are used to activate the time display when a hand or finger is placed near the clock. As Fabio puts it, “shadow play” will make the clock display the time. Otherwise, it switches to be a simple round device on the wall that displays colorful animations.

It’s a neat build that looks quite unassuming as a decor piece, and yet it also serves as an easy-to-read timepiece. We’ve seen LEDs put to all sorts of good uses in clock builds around these parts. Meanwhile, if you’ve found your own unique way to display the time—either in readable fashion, or totally oblique—don’t hesitate to let us know.

Vintage Plasma Display Shows Current Rad Levels

It’s hard to argue that Soviet-Era nuclear engineering may have some small flaws, what with the heavily-monitored exclusion zone around Chernobyl No.4. Evidently, their industrial designers were more on-the-ball, because [Alex] has crafted the absolute most stylish fallout monitor we’ve ever seen, with ESP32 and a vintage Soviet-designed plasma display to indicate radiation levels in the exclusion zone.

Since the device is not located within the zone, [Alex] is using the ESP32 to access sensor values published via an API at SaveEcoBot. He also includes a Geiger counter module for the background level at the current location. That’s straightforward enough– integrating the modern microcontroller with the vintage plasma display is where the real hacking comes in. Though they might not be as vintage as you think: apparently the Elektronika MS6205 remained in production until 2005, but 2005 is still vintage. [Alex] notes in the instructions on hackaday.io that we’re actually looking for a post-1995 model to follow along.

The Elektronika MS6205 is based on a 100×100 pixel plasma matrix, but it is operated as a text-only display with Latin and Cyrillic characters in ROM. The ROM also includes some extra symbols and Greek letters (the gamma will come in handy for this application) that can be unlocked by cutting a trace on the board and replacing it with a bodge wire. Igniting the display requires 250V, which will require more work for North Americans than it does in Ukraine. Driving the display requires interfacing with the 7-bit data bus and 8-bit address bus, but [Alex] has made the wiring and code available on the project site if you’re interested in these devices. If you want to watch it in action and get more background, check out the video embedded below.

These sorts of monochrome plasma displays have a lot of charm, and are absolutely worth reverse-engineering if you get your hands on different model. If you like the vibe of this display, you might also be interested in Vacuum Fluorescent Displays, which can be easier to find in the West.

Thanks to [Alex] for the tip. Like the tireless IEA workers at Chernobyl, we’re always monitoring the radiation level of our tips line.  Continue reading “Vintage Plasma Display Shows Current Rad Levels”

Engrave A Cylinder Without A Rotary Attachment? No Problem!

Laser-engraving a cylindrical object usually requires a rotary attachment, which is a motorized holder that rotates a cylindrical object in sync with the engraver. But [Samcraft] shows that engraving all around a mug can be done without a motorized rotary holder.

Separating a design into elements thin enough to engrave individually without losing focus is the key.

The basic idea is to split the design into a number of separate engraving jobs, each containing one element of the overall design, then setting the mug into a 3D printed jig and manually rotating it between jobs. To demonstrate, [Samcraft] selects a series of line-art flowers and plants which are ideal for this approach because there’s no need to minutely register the individual engravings with one another.

What about focus? [Samcraft] found that a design up to 45 mm wide could be engraved onto the curved surface of his mug before focus suffers too much. It’s true that this technique only works with certain types of designs — specifically those with individual elements that can be separated into tall and thin segments — but the results are pretty nice.

Laser engravers are a very serious potential eye hazard, and we are not delighted to see the way the shield around [Samcraft]’s engraver cannot close completely to accommodate the mug while the laser is active. But we’re going to assume [Samcraft] has appropriate precautions and eye protection in place off-camera, because laser radiation and eyeballs absolutely do not belong together, even indirectly.

Continue reading “Engrave A Cylinder Without A Rotary Attachment? No Problem!”