2022 Cyberdeck Contest: Picking The Best Of The Best

Given how many incredible builds we’ve covered over the last couple of years, we knew that an official Cyberdeck Contest would certainly receive some impressive entries. But never in our wildest dreams could we have predicted that more than 100 decks would end up crossing the finish line, or that of them, the vast majority would be never-before-seen designs. In fact, the response to this contest was so overwhelming that the judging process took far longer than we originally anticipated.

Ultimately, we decided that there were simply too many phenomenal builds entered into the contest to award $150 Digikey spending sprees to just three of them. So as an added bonus, we’ve rustled up some $50 Tindie gift certificates that will go to the four special category honorable mentions.

With that, let’s take a look at the cyberdecks that took top honors as decided by our panel of judges.

Continue reading “2022 Cyberdeck Contest: Picking The Best Of The Best”

Tiny Dongle Brings The Hard Drive’s Song Back To Updated Retrocomputers

Back in the “beige box” days of computing, it was pretty easy to tell what your machine was doing just by listening to it, because the hard drive was constantly thrashing the heads back and forth. It was sometimes annoying, but never as annoying as hearing the stream of Geiger counter-like clicks stop when you knew it wasn’t done loading a program yet.

That “happy sound” is getting harder to come by, even on retro machines, which increasingly have had their original thrash-o-matic drives replaced with compact flash and other solid-state drives. This HDD sound simulator aims to fill that diagnostic and nostalgic gap on any machine that isn’t quite clicky enough for you. Sadly, [Matthias Werner] provides no build details for his creation, but between the longish demo video below (by a satisfied customer) and the details of the first version, it’s easy enough to figure out what’s going on here. An ATtiny and a few support components ride on a small PCB along with a piezoelectric speaker. The dongle connects to the hard drive activity light, which triggers a series of clicks from the speaker that sound remarkably like a hard drive heading seeking tracks. A demo starts at 7:09 in the video below; the very brave — or very nostalgic — might want to check out the full defragmentation that starts at 13:11.

Sure, this one is perhaps a bit over-the-top, but in the retrocomputing world, no price is too high to pay in the name of nostalgia. And it’s still far from the most ridiculous hard drive activity indicator we’ve seen.

Continue reading “Tiny Dongle Brings The Hard Drive’s Song Back To Updated Retrocomputers”

Probably The Simplest Radiation Detector You Already Own

Over the years we’ve featured quite a few radiatioactivity detectors, which usually include a Geiger-Muller tube, or perhaps a large-area photodiode. But in the event of radiation exposure from a nuclear attack, how does the man in the street gauge the exposure without owning a dedicated instrument? This was a question of note at the height of the Cold War, and it’s one that [Dr. Marshall Brucer] answered in a 1962 paper entitled “When Do You Leave A Fallout Shelter“. The full paper is behind a paywall but the part we’re interested in is on the freely available first page.

Dr. Brucer‘s detector is simplicity itself, and it relies on the erosion of a static electric charge by radiation. Should you rub a plastic comb in your hair it will accumulate enough charge to pick up a small piece of paper, and under normal background radiation the charge will ebb away such that it will drop the piece of paper after about 15 seconds. His calculation is that once the field reaches around 10 roentgens per hour it will be enough to erase the charge and drop the paper immediately. There’s a comtemporary newspaper report (Page 7, just to the left of the large advertisment) which tells the reader that since the exposure limit is 100 roentgens (one sievert), this test failing indicates that they have nine hours to create a better shelter. For obvious reasons we can’t test this at the Hackaday bench, but those of us who remember the days when such topics were a real concern will be searching for a handy comb anyway.

Thanks [Victor Matthew] for the tip.

This Scratch-Built X-Ray Tube Really Shines

On no planet is making your own X-ray tube a good idea. But that doesn’t mean we’re not going to talk about it, because it’s pretty darn cool.

And when we say making an X-ray tube, we mean it — [atominik] worked from raw materials, like glass test tubes, tungsten welding electrodes, and bits of scrap metal, to make this dangerously delightful tube. His tool setup was minimalistic as well– where we might expect to see a glassblower’s lathe like the ones used by [Dalibor Farny] to make his custom Nixie tubes, [atominik] only had a small oxy-propane hand torch to work with. The only other specialized tools, besides the obvious vacuum pump, was a homebrew spot welder, which was used to bond metal components to the tungsten wires used for the glass-to-metal seals.

Although [atominik] made several versions, the best tube is a hot cathode design, with a thoriated tungsten cathode inside a copper focusing cup. Across from that is the anode, a copper slug target with an angled face to direct the X-rays perpendicular to the long axis of the tube. He also included a titanium electrode to create a getter to scavenge oxygen and nitrogen and improve the vacuum inside the tube. All in all, it looks pretty similar to a commercial dental X-ray tube.

The demonstration in the video below is both convincing and terrifying. He doesn’t mention the voltage he’s using across the anode, but from the cracking sound we’d guess somewhere around 25- to 30 kilovolts. The tube really gets his Geiger counter clicking.

Here’s hoping [atominik] is taking the proper precautions during these experiments, and that you do too if you decide to replicate this. You’ll also probably want to check out our look at the engineering inside commercial medical X-ray tubes.

Continue reading “This Scratch-Built X-Ray Tube Really Shines”

A black PCB with an ESP32 and an SBM-20 geiger counter

Flexible Radiation Monitoring System Speaks LoRa And WiFi

Radioactivity has always been a fascinating phenomenon for anyone interested in physics, and as a result we’ve featured many radioactivity-related projects on these pages over the years. More recently however, fears of nuclear disaster have prompted many hackers to look into environmental radiation monitoring. [Malte] was one of those looking to upgrade the radiation monitor on his weather station, but found the options for wireless geiger counters a bit limited.

So he decided to build himself his own Wifi and LoRa compatible environmental radiation monitor. Like most such projects it’s based on the ubiquitous Soviet-made SBM-20 GM tube, although the design also supports the Chinese J305βγ model. In either case, the tube’s operating voltage is generated by a discrete-transistor based oscillator which boosts the board’s 5 V supply to around 400 V with the help of an inductor and a voltage multiplier.

Graphs showing temperature, humidity and radiation levels
Data can be visualized in graphs, together with other data from the weather station like temperature and humidity

The tube’s output signal is converted into clean digital pulses to be counted by either an ESP32 or a Moteino R6, depending on the choice of wireless protocol. The ESP can make its data available through a web interface using its WiFi interface, while the Moteino can communicate through LoRa and sends out its data using MQTT. The resulting data is a counts-per-minute value which can be converted into an equivalent dose in Sievert using a simple conversion formula.

All design files are available on [Malte]’s website, including a PCB layout that neatly fits inside standard waterproof enclosures. Getting more radiation monitors out in the field can only be a good thing, as we found out when we tried to detect a radiation accident using community-sourced data back in 2019. Don’t like WiFi or LoRa? There’s plenty of other ways to connect your GM tubes to the internet.

A portable computer built inside a rugged carrying case

2022 Cyberdeck Contest: The Black Beast Will Help You Survive A Robot Apocalypse

With AI systems getting smarter every day, one might wonder if they might someday evolve into a sentient Skynet-like system and try to take over the world. We’re not sure how close we are to such a situation, but we do know that if the robot apocalypse were to happen, we would want to stay close to [LordOfAllThings], who would likely be carrying the Black Beast. This scary-sounding machine is in essence a Raspberry Pi-based portable computer built inside an outdoor carrying case, with a wide range of unusual peripherals that make it the digital equivalent of a Swiss army knife. In other words, it’s a cyberdeck built for end times — and whatever comes after.

For example, an array of ESP32-based modules plus an SDR module allow you to intercept and analyze hostile robots’ communications, whether they’re using Bluetooth, WiFi, LoRaWAN, or anything in the 433 or 868 MHz ranges. An FM transmitter comes in handy for reaching out to fellow citizens who are trapped with nothing more than an analog radio receiver, while a suite of environmental sensors (including a Geiger counter) should help determine if Skynet has released any harmful substances to flush out those last few pesky humans. (Ed. note: No marigolds in the promised land and all that.)

If you manage to find a wired Ethernet connection somewhere, a built-in five-port gigabit router lets you set up a local network, obviously with a custom network analyzer to detect any unwanted intrusions. A storage compartment contains every kind of cable you could need, as well as useful gadgets like flashlights and, indeed, an actual Swiss army knife.

Continue reading “2022 Cyberdeck Contest: The Black Beast Will Help You Survive A Robot Apocalypse”

Hackaday Podcast 177: Microscopes, Telescopes, Telephonoscopes, And A Keyboardoscope?

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos stood around talking like they weren’t thousands of miles apart. And we mean that literally: Kristina just got an up/down desk, and it turns out that Elliot’s had the exact same one for years.

Kristina’s phone is heavier than yours.

In between the hammerings on Kristina’s house (she’s getting new siding), we kick things off by drooling over the first images from the James Webb Space Telescope, and compare a few of them to the same shots from Hubble.

We managed to save a bit of saliva for all the seriously swell keyboards and not-keyboards we saw throughout the Odd Inputs and Peculiar Peripherals contest, all of which are winners in our book.

This week, we ask the tough questions, like why would someone who has never played guitar want to build one from scratch? We can only guess that the answer is simply, ‘because l can’. As lazy as that reasoning may sound, this build is anything but.

Later on, we’ll ogle an ocean of PS/2 keyboards and their new owner’s portable testing rig, complain about ASMR, and laugh about a giant nose that sneezes out sanitizer.

Direct download. And burn it to CD-RW!

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 177: Microscopes, Telescopes, Telephonoscopes, And A Keyboardoscope?”