A man playing an automated recorder

Musical Robot Lets You Play The Recorder Hands-Free

Although many people might remember the recorder as just a simple instrument from their introductory music classes, it can nevertheless produce rich and varied melodies in the hands of a virtuoso like Frans Brüggen. [Luis Marx] also took music lessons as a child, but never progressed much beyond an elementary level. Instead, he preferred to spend his time honing his engineering skills, which eventually enabled him to get back into music.

Initially, he wanted to build a piano-playing exoskeleton, to marionette his fingers up and down the ivories, but had to bail on that one because of the insane complexity. So instead, he built himself a robot that helps him play the recorder. (Video, in German, embedded below, fast-forwarded to the recorder part.)

A set of solenoids and an Arduino on a 3D-printed frameA recorder has eight finger holes, which can be covered or uncovered in various combinations to produce tones. [Luis] therefore used eight solenoids, mounted on a 3D-printed frame, to actuate the finger holes. The basic idea worked, but getting the solenoids to fully cover the holes each time turned out to be a challenge: even a slight misalignment would cause air to leak past the plug and produce a horrible off-key sound.

After a lot of trial and error, [Luis] found foam earplugs to be a pretty good material for emulating human fingertips. He also discovered that relying on the solenoids’ spring tension to keep the holes closed was not reliable; a better solution was to flip the solenoids around and use the much larger force from their powered stroke to create an air-tight seal.

The solenoids are driven by an Arduino Nano through a set of MOSFET modules, powered by a lithium battery. [Luis] wrote some Arduino sketches with famous melodies like Beethoven’s Für Elise, which sound quite decent on the robo-recorder: perhaps not on Frans Brüggen’s level, but pretty impressive for a self-declared “music noob” like [Luis].

Many robotic musicians play instruments like pianos or xylophones. Instruments from the flute family are harder to automate, but it has been done before. We’ve even seen a MIDI-powered harmonica.

Continue reading “Musical Robot Lets You Play The Recorder Hands-Free”

The CCTV Cameras That Recorded The Chernobyl Disaster And Aftermath

The Soviet KTP-63-based remote controlled camera system, including switch and control panel. (Credit: Chernobyl Family on YouTube)
The Soviet KTP-63-based remote-controlled camera system, including switch and control panel. (Credit: Chernobyl Family on YouTube)

When we picture the Chernobyl Nuclear Power Plant disaster and its aftermath, we tend to recall just the commonly shared video recorded by television crews, but the unsung heroes were definitely the robotic cameras that served to keep an eye on not only the stricken reactor itself but also the sites holding contaminated equipment and debris. These camera systems are the subject of a recent video by the [Chernobyl Family] channel on YouTube, as they tear down, as well as plug in these pinnacles of 1980s vidicon-based Soviet engineering.

When the accident occurred at the #4 reactor at the Chernobyl Nuclear Power Plant (ChNPP) in 1986, engineers not only scrambled to find ways to deal with the immediate aftermath but also to monitor and enter radioactive areas without exposing squishy human tissues. This is where the KTP-63 and KTP-64  cameras come into play. One is reminiscent of your typical security camera, while the other is a special model that uses a mirror instead of directly exposing the lens and tube to radiation. As a result, the latter type was quite hardy. Using a central control panel, multiple cameras could be controlled.

When mounted to remotely controlled robots, these cameras were connected to an umbilical cord that gave operators eyes on the site without risking any lives, making these cameras both literally life-savers and providing a solid template for remote-controlled vehicles in future disaster zones.

Editor’s note: Historically, the site was called Чернобыль, which is romanized to Chernobyl, but as a part of Ukraine, it is now Чорнобиль or Chornobyl. Because the disaster and the power plant occurred in 1986, we’ve used the original name Chernobyl here, as does the YouTube channel.

Continue reading “The CCTV Cameras That Recorded The Chernobyl Disaster And Aftermath”

The Fascinating Evolution Of Micromouse

You would think there are only so many ways for a robotic mouse to run a maze, but in its almost 50 year history, competitors in Micromouse events have repeatedly proven this assumption false. In the video after the break, [Veritasium] takes us on a fascinating journey through the development of Micromouse competition robots.

The goal of Micromouse is simple: Get to the destination square (center) of a maze in the shortest time. Competitors are not allowed to update the programming of their vehicles once the layout is revealed at the start of an event. Over the years, there have been several innovations that might seem obvious now but were groundbreaking at the time.

The most obvious first challenge is finding the maze’s center. Simple wall following in the first event in 1977 has developed into variations of the “flood fill” algorithm. Initially, all robots stopped before turning a corner until someone realized that you could cut corners at 45° and move diagonally if the robot is narrow enough. The shortest path is not always the fastest since cornering loses a lot of speed, so it’s sometimes possible to improve time by picking a slightly longer router with fewer corners.

More speed is only good if you can keep control, so many robots now incorporate fans to suck them down, increasing traction. This has led to speeds as high as 7 meters/second and cornering forces of up to 6 G. Even specks of dust can cause loss of control, so all competitors use tape to clean their wheels before a run. Many winning runs are now under 10 seconds, which require many design iterations to increase controllable speed and reduce weight.

All these innovations started as experiments, and the beauty of Microhouse lies in its accessibility. It doesn’t require much of a budget to get started, and the technical barrier to entry is lower than ever. We’ve looked at another Micromouse design before. Even if they aren’t micromice, we can’t get enough of tiny robots.

Continue reading “The Fascinating Evolution Of Micromouse”

Electronic Connect 4 Console Doesn’t Use LCD

You might think that making your own electronic games would require some kind of LCD, but lately, [Mirko Pavleski] has been making his using inexpensive 8X8 WS2812B LED panels. This lets even a modest microcontroller easily control a 64-pixel “screen.” In this case, [Mirko] uses an Arduino Nano, 3 switches, and a buzzer along with some 3D printed components to make a good-looking game. You can see it in action in the video below.

The WS2812B panels are easy to use since the devices have a simple protocol where you only talk to the first LED. You send pulses to determine each LED’s color. The first LED changes color and then starts repeating what you send to the next LED, which, of course, does the same thing. When you pause a bit, the array decides you are done, and the next train of pulses will start back at the first LED.

It looks like the project is based on a German project from [Bernd Albrecht], but our German isn’t up to snuff, and machine translation always leaves something to be desired. Another developer added a play against the computer mode. This is a simple program and would be easy to port to the microcontroller of your choice. [Mirko]’s execution of it looks like it could be a commercial product. If you made one as a gift, we bet no one would guess you built it yourself.

Of course, you could play a real robot. You could probably repurpose this hardware for many different games, too.

Continue reading “Electronic Connect 4 Console Doesn’t Use LCD”

Hackaday Links Column Banner

Hackaday Links: May 28, 2023

The Great Automotive AM Radio War of 2023 rages on, with the news this week that Ford has capitulated, at least for now. You’ll recall that the opening salvo came when the US automaker declared that AM radio was unusable in their EV offerings thanks to interference generated by the motor controller. Rather than fixing the root problem, Ford decided to delete the AM option from their EV infotainment systems, while letting their rolling EMI generators just keep blasting out interference for everyone to enjoy. Lawmakers began rattling their sabers in response, threatening legislation to include AM radio in every vehicle as a matter of public safety. Ford saw the writing on the wall and reversed course, saying that AM is back for at least the 2024 model year, and that vehicles already delivered without it will get a fix via software update.

Continue reading “Hackaday Links: May 28, 2023”

BBC Master 128 Revealed

[Adrian] comments that the BBC Master 128 is a rare 8-bit computer, and we agree — we couldn’t remember hearing about that particular machine, although the BBC series is quite familiar. The machine has a whopping 128 K of RAM, quite a bit for those days. It also had a 6502 variant known as the 65C12, which has an extra pin compared to a 6502 and doesn’t use the same clock arrangement. A viewer sent him one of these machines, which apparently was used in the BBC studios. You can see this rare beauty in the video below.

The computer has a very nice-looking keyboard that includes a number pad. There are also expansion ports for printers and floppy disk drives. It has some similarities to a standard BBC computer but has a number of differences externally and internally.

Of course, we were waiting for the teardown about 15 minutes in. There were some corroded batteries but luckily, they didn’t do much damage. The power supply had a burned smell. Cracking it open for inspection was a good time to convert the power supply to run on 120 V, too.

After some power supply repair, it was time to power the machine up. The results were not half bad. It started up with a cryptic error message: “This is not a language.” Better than a dead screen. The keyboard wasn’t totally working, though. A bit of internet searching found that the error happens when the battery dies and the machine loses its configuration.

More walkthroughs will take a bit more work on the keyboard. But we were impressed it came up as far as it did, and we look forward to a future installment where the machine fully starts up.

[Adrian] mentioned the co-processor slot accepting a Raspberry Pi, something we’ve talked about before. Or, add an FPGA and make the plucky computer think it is a PDP/11.

Continue reading “BBC Master 128 Revealed”

Mangle Videos With RecurBOY And A Raspberry Pi Zero

You used to need a lot of equipment to be a video DJ. Now you can do it all with a Raspberry Pi Zero and [cyberboy666]’s recurBOY. And if you missed out on the 1970’s video-editing psychedelia, now’s your chance to catch up – recurBOY is a modern video synth with all of the bells and whistles, and it’ll fit in your pocket. Check out [cyberboy666]’s demo video if you don’t yet know what you’re getting into. (Embedded below.)

RecurBOY has four modes: video, shader, effects, and external input, and each of these is significantly cooler than the previous. Video mode plays videos straight off of the SD card through the recurBOY’s composite video out. Shader mode lets you program your own shaders using the GLES shader dialect for resource-constrained devices. And this is where the various knobs and buttons come in. You can program the various shader routines to read any of the pots as input, allowing you to tweak the graphics demos on the fly.

Effects mode overlays your shaders on the video that’s playing, and external mode allows you to plug in a USB video capture card or a webcam so you can do all that same mangling with a live camera feed. And these two modes are where it gets awesome. The shader effects in the demo video cover all of the analog classics – including bloom and RGB separation – but also some distinctly digital effects. And again, you can tweak them all live with the knobs. Or plug in a MIDI controller and control it all externally. What hasn’t he thought of?

Old school analog video effects are really fun, and recurBOY brings them to you with the flexibility of modern shader coding. What’s not to love? If you want to see the pinnacle of the pre-digital era, that would be the Scanimate. For a video synth that integrates with your audio synth, check out Hypno. And if glitching the video is more your style, you can hijack the RAM of a VGA/composite converter.

Trippy, man!

Continue reading “Mangle Videos With RecurBOY And A Raspberry Pi Zero”