The Short Workbench

Imagine an electronics lab. If you grew up in the age of tubes, you might envision a room full of heavy large equipment. Even if you grew up in the latter part of the last century, your idea might be a fairly large workbench with giant boxes full of blinking lights. These days, you can do everything in one little box connected to a PC. Somehow, though, it doesn’t quite feel right. Besides, you might be using your computer for something else.

I’m fortunate in that I have a good-sized workspace in a separate building. My main bench has an oscilloscope, several power supplies, a function generator, a bench meter, and at least two counters. But I also have an office in the house, and sometimes I just want to do something there, but I don’t have a lot of space. I finally found a very workable solution that fits on a credenza and takes just around 14 inches of linear space.

How?

How can I pack the whole thing in 14 inches? The trick is to use only two boxes, but they need to be devices that can do a lot. The latest generation of oscilloscopes are quite small. My scope of choice is a Rigol DHO900, although there are other similar-sized scopes out there.

If you’ve only seen these in pictures, it is hard to realize how much smaller they are than the usual scopes. They should put a banana in the pictures for scale. The scope is about 10.5″ wide (265 mm and change). It is also razor thin: 3″ or 77 mm. For comparison, that’s about an inch and a half narrower and nearly half the width of a DS1052E, which has a smaller screen and only two channels.

A lot of test gear in a short run.

If you get the scope tricked out, you’ve just crammed a bunch of features into that small space. Of course, you have a scope and a spectrum analyzer. You can use the thing as a voltmeter, but it isn’t the primary meter on the bench. If you spend a few extra dollars, you can also get a function generator and logic analyzer built-in. Tip: the scope doesn’t come with the logic analyzer probes, and they are pricey. However, you can find clones of them in the usual places that are very inexpensive and work fine.

There are plenty of reviews of this and similar scopes around, so I won’t talk anymore about it. The biggest problem is where to park all the probes. Continue reading “The Short Workbench”

PCB Design Review: DPI-LVDS Sony Vaio LCD Devboard

Ordering a PCB with mistakes sucks. We should help each other avoid such mistakes – especially newcomers. One of the best ways to avoid these mistakes, especially if it’s your first one, is to get a few other people to look at it. You deserve to get a PCB that is as functional and as helpful as humanly possible, so that you can be happy with your project, and feel ever so slightly more confident in yourself in whatever you shall set out to do next.

At the end of last year, I put out a call for design review submissions, and we’ve received enough projects to make me feel overwhelmed for a bit. A design review has always felt like a personal thing, and here we are doing them in public. But in that sense, we hope that everyone can learn from them, and we hope to push forward a healthy review culture.

What’s more, these articles won’t just be design review. Every project I’m highlighting is worthy of a Hackaday feature just on its own, so tune in and learn more about them!

Today’s Contestant

For this example, I will be walking through a review I’ve already given someone with a pretty cool board, for a pretty cool project I’ve already shown you. Remember the Sony Vaio remake project? A fair bit of people have reached out to me afterwards, and one of them, [Exentio] also had the same Sony Vaio rebuild idea in mind. We started chatting, and he decided to tackle one of the project’s milestones, and perhaps the most crucial one – adapting the LCD.

Continue reading “PCB Design Review: DPI-LVDS Sony Vaio LCD Devboard”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Pocket Cyberdeck

When you find something you love doing, you want to do it everywhere, all the time. Such is the case with [jefmer] and programming. The trouble is, there is not a single laptop or tablet out there that really deals well with direct sunlight. So, what’s a hacker to do during the day? Stay indoors and suffer?

Image by [jefmer] via Hackaday.IO
The answer is a project like Pocket Pad. This purpose-built PDA uses a Nice! Nano and a pair of two very low-power ST7302-driven monochrome displays. They have no backlight, but they update much faster than e-paper displays. According to [jefmer], the brighter the ambient light, the more readable the displays become. What more could you want? (Besides a backlight?)

The miniature PocketType 40% is a little small for touch typing, but facilitates thumbs well. [jefmer] added those nice vinyl transfer legends and sealed them with clear nail polish.

All of the software including the keyboard scanner is written in Espruino, which is an implementation of JavaScript that targets embedded devices. Since it’s an interpreted language, [jefmer] can both write and execute programs directly on the Pocket Pad, using the bottom screen for the REPL. I’d sure like to have one of these in my pocket!
Continue reading “Keebin’ With Kristina: The One With The Pocket Cyberdeck”

Hack Makes Microwave Cookies Fast And Not Terrible

Making a chocolate chip cookie is easy. Making a good chocolate chip cookie is a little harder. Making a good chocolate chip cookie quickly is a pretty tall order, but if you cobble together a microwave and a conventional oven, you just might get delicious and fast to get together.

The goal of this Frankenstein-esque project is to build a vending machine that can whip up a fresh-baked chocolate chip cookie on demand and make [Chaz] wealthy beyond his wildest dreams. We’re guessing at that last part; for all we know his goal is world peace through instant cookies. We’re fine with the idea either way, and his previous work on the project resulted in a semi-automatic cookie gun to splooge the dough out in suitable dollops.

The current work is turning those into something edible, for which a microwave seems a logical choice. Experience tells us otherwise, so off to the thrift store went [Chaz], returning with a used air fryer. He ripped the guts out of a small microwave, slapped the magnetron onto the side of the air fryer, and discovered that this was officially A Bad Idea™ via a microwave leakage tester. Round 2 went the other way — adding a conventional heating element to a large microwave. That worked much better, especially after close-up video revealed the dynamics of microwave cookery and the best way to combine the two cooking modalities. The result is a contraption that makes a pretty tasty-looking two-minute cookie. World peace, here we come!

Of course there’s plenty to say about the safety of all this, much of which [Chaz] himself cops to in the video. It’s important to remember that he’s just prototyping here; we’re sure the final machine will be a little more sophisticated than a heat gun duct-taped to the side of a microwave. Those cookies aren’t going to bake themselves, though, so you’ve got to start somewhere.

Continue reading “Hack Makes Microwave Cookies Fast And Not Terrible”

Your Cat Needs Its Own TV

Cats are wonderful creatures to have around, and they provide us with hours of entertainment. So why not do a little something to entertain them in return? That’s exactly what [Becky Stern] did by making a cat TV that shows YouTube videos of birds and other cat-approved content. Not all cats seem to care about TV, but [Becky]’s cat Benchley really gets into it.

As you may have guessed, this is a fairly simple build, consisting largely of a Raspberry Pi, a speaker, and a screen — a 5″ HDMI LCD display to be exact. Seems like a nice size for cats. After getting the cat-puter up and running, [Becky] set about designing a 3D-printed enclosure to turn it into a TV. The first draft looked great in marble-effect filament, but lacked breathing holes for the Pi, so the final version has a nice honeycomb pattern that is too small for curious cat paws to fit through.

What their paws can do is accidentally pause the video via the touch screen, so [Becky] swapped the USB cable for a charge-only to prevent this. Be sure to check out the build video after the break, because there is plenty of cat cuteness to be had. [Benchley] was so into it that he went looking around back for cats and squirrels inside the box.

Would you rather not encourage your cats to lie about the house watching TV all day? Make them play piano for their dinner.

Continue reading “Your Cat Needs Its Own TV”

A vanadium based flow battery made with 3D printed parts

A Vanadium Redox Flow Battery You Can Build

Vanadium flow batteries are an interesting project, with the materials easily obtainable by the DIY hacker. To that effect [Cayrex2] over on YouTube presents their take on a small, self-contained flow battery created with off the shelf parts and a few 3D prints. The video (embedded below) is part 5 of the series, detailing the final construction, charging and discharging processes. The first four parts of the series are part 1, part 2, part 3, and part 4.

The concept of a flow battery is this: rather than storing energy as a chemical change on the electrodes of a cell or in some localised chemical change in an electrolyte layer, flow batteries store energy due to the chemical changediagram of a vanadium flow battery of a pair of electrolytes. These are held externally to the cell and connected with a pair of pumps. The capacity of a flow battery depends not upon the electrodes but instead the volume and concentration of the electrolyte, which means, for stationary installations, to increase storage, you need a bigger pair of tanks. There are even 4 MWh containerised flow batteries installed in various locations where the storage of renewable-derived energy needs a buffer to smooth out the power flow. The neat thing about vanadium flow batteries is centred around the versatility of vanadium itself. It can exist in four stable oxidation states so that a flow battery can utilise it for both sides of the reaction cell.

Continue reading “A Vanadium Redox Flow Battery You Can Build”

This Week In Security: Blame The Feds, Emergency Patches, And The DMA

The temptation to “take the money and run” was apparently too much for the leadership of the AlphV ransomware crime ring. You may have heard of this group as being behind the breach of Change Healthcare, and causing payment problems for nearly the entire US Healthcare system. And that hack seems to be key to what’s happened this week.

It’s known that a $22 million payment made it through the bitcoin maze to the AlphV wallet on the 1st. It’s believed that this is a payment from Change Healthcare to recover ransomed files. An important detail here is that AlphV is a ransomware-as-a-service provider, and the actual hacking is done by “affiliates”, who use that service, and AlphV handles the infrastructure, maintaining the actual malware, and serving as a payment processor. That last one is key here.

A couple days after that big payment landed in the AlphV account, a seizure notice went up on the AlphV TOR site, claiming that it had been taken down by the FBI and associated agencies. There was something a bit odd about it, though. See, the FBI did seize the AlphV Tor site back in December. The seizure notice this time was an exact copy, as if someone had just done a “save page as”, and posted the copy.

There is precedent for a ransomware group to close up shop and disappear after hitting a big score. The disruption AlphV enabled in the US health care system painted a big target on them, and it didn’t take a tactical genius to realize it might be good to lay low for a while. Pocketing the entire $22 million ransom probably didn’t hurt either. The particularly nasty part is that the affiliate that actually pulled off the attack still claims to have four terabytes of sensitive data, and no incentive to not release it online. It’s not even entirely clear that Change Healthcare actually received a decryption key for their data. You do not want to deal with these people.

Continue reading “This Week In Security: Blame The Feds, Emergency Patches, And The DMA”