Learn About Blockchains By Building One

What do we curious Hackaday scribes do when we want to learn about something? First port of call: search the web.

When that something is blockchain technology and we’re looking for an explanation that expands our cursory overview into a more fundamental understanding of the basic principles, there is a problem. It seems that to most people blockchains equate to one thing: cryptocurrencies, and since cryptocurrencies mean MONEY, they then descend into a cultish frenzy surrounded by a little cloud of flying dollar signs. Finding [Daniel van Flymen]’s explanation of the fundamentals of a blockchain in terms of the creation of a simple example chain using Python was thus a breath of fresh air, and provided the required education. Even if he does start the piece by assuming that the reader is yet another cryptocurrency wonk.

We start by creating a simple class to hold all the Python functions, then we are shown a single block. In his example it’s a JSON object, and it contains the payload in the form of a transaction record along with the required proof-of-work and hash. We’re then taken through a very simple proof-of-work algorithm, before being shown how the whole can be implemented as very simple endpoints.

You are not going to launch a cryptocurrency using this code, and indeed that wasn’t our purpose in seeking it out. But if you are curious about the mechanics of a blockchain and are equally tired of evangelists of The Blockchain who claim it will cure all ills but can’t explain it in layman’s terms, then this relatively simple example is for you.

The wrong way to build a blockchain image: Jenny List. #FarmLife.

Tiny Tensor Brings Machine Deep Learning To Micros

We’ve talked about TensorFlow before — Google’s deep learning library. Crunching all that data is the province of big computers, not embedded systems, right? Not so fast. [Neil-Tan] and others have been working on uTensor, an implementation that runs on boards that support Mbed-OS 5.6 or higher.

Mbed of course is the embedded framework for ARM, and uTensor requires at least 256K of RAM on the chip and an SD card less than (that’s right; less than) 32 GB. If your board of choice doesn’t already have an SD card slot, you’ll need to add one.

Continue reading “Tiny Tensor Brings Machine Deep Learning To Micros”

(Nearly) All Your Computers Run MINIX

Are you reading this on a machine running a GNU/Linux distribution? A Windows machine? Or perhaps an Apple OS? It doesn’t really matter, because your computer is probably running MINIX anyway.

There once was a time when microprocessors were relatively straightforward devices, capable of being understood more or less in their entirety by a single engineer without especially God-like skills. They had buses upon which hung peripherals, and for code to run on them, one of those peripherals had better supply it.

A modern high-end processor is a complex multicore marvel of technological achievement, so labyrinthine in fact that unlike those simple devices of old it may need to contain a dedicated extra core whose only job is to manage the rest of the onboard functions. Intel processors have had one for years, it’s called the Management Engine, or ME, and it has its own firmware baked into the chip. It is this firmware, that according to a discovery by [Ronald Minnich], contains a copy of the MINIX operating system.

If you are not the oldest of readers, it’s possible that you may not have heard of MINIX. Or if you have, it might be in connection with the gestation of [Linus Torvalds]’ first Linux kernel. It’s a UNIX-like operating system created in the 1980s as a teaching aid, and for a time it held a significant attraction as the closest you could get to real UNIX on some of the affordable 16-bit desktop and home computers. Amiga owners paid for copies of it on floppy disks, it was even something of an object of desire. It’s still in active development, but it’s fair to say its attraction lies in its simplicity rather than its sophistication.

It’s thus a worry to find it on the Intel ME, because in that position it lies at the most privileged level of access to your computer’s hardware. Your desktop operating system, by contrast, sees the hardware through several layers of abstraction in the name of security, so a simple OS with full networking and full hardware access represents a significant opportunity to anyone with an eye to compromising it. Placing tinfoil hats firmly on your heads as the unmistakable thwop of black helicopters eases into the soundscape you might claim that this is exactly what they want anyway. We would hope that if they wanted to compromise our PCs with a backdoor they’d do it in such a way as to make it a little less easy for The Other Lot. We suspect it’s far more likely that this is a case of the firmware being considered to be an out-of-sight piece of the hardware that nobody would concern themselves with, rather than a potential attack vector that everyone should. It would be nice to think that we’ll see some abrupt updates, but we suspect that won’t happen.

Intel I7 processor underside: smial [FAL].

Understanding Floating Point Numbers

People learn in different ways, but sometimes the establishment fixates on explaining a concept in one way. If that’s not your way you might be out of luck. If you have trouble internalizing floating point number representations, the Internet is your friend. [Fabian Sanglard] (author of Game Engine Black Book: Wolfenstein 3D) didn’t like the traditional presentation of floating point numbers, so he decided to explain them a different way.

Continue reading “Understanding Floating Point Numbers”

Emulate ICs In Python

Most people who want to simulate logic ICs will use Verilog, VHDL, or System Verilog. Not [hsoft]. He wanted to use Python, and wrote a simple Python framework for doing just that. You can find the code on GitHub, and there is an ASCII video that won’t embed here at Hackaday, but which you can view at ASCIInema.

Below the break we have an example of “constructing” a circuit in Python using ICemu:

Continue reading “Emulate ICs In Python”

Reverse Engineering Guitar Hero

What do you do when a ten-year-old video game has a bug in it? If you are [ExileLord] you fix it, even if you don’t have the source code. Want to know how? Luckily, he produced a video showing all the details of how he tracked the bug down and fixed it. You can see the video below. You may or may not care about Guitar Hero, but the exercise of reverse engineering and patching the game is a great example of the tools and logic required to reverse engineer any binary software, especially a Windows binary.

The tool of choice is IDA, an interactive debugger and disassembler. The crash thows an exception and since [ExileLord] has done some work on the game before, he was able to find a function that was creating a screen element that eventually led to the crash.

Continue reading “Reverse Engineering Guitar Hero”

Satellite Tracking With Friends

If you’re in the mood to track satellites, it’s a relatively simple task to look up one of a multitude of websites that can give you a list of satellites visible from your location. However, if you’re interested in using satellites to communicate with far-flung friends, you might be interested in this multi-point satellite tracker.

[Stephen Downward VA1QLE] developed the tracker to make it easier to figure out which satellites would be simultaneously visible to people at different locations on the Earth’s surface. This is useful for amateur radio, as signals can be passed through satellites with ham gear onboard (such as NO-44), or users can even chat over defunct military satellites.

[Stephen] claims the algorithm is inefficient, but calculations are made in a matter of a few seconds, so we’re not complaining. While it was originally designed for just two stations, it works with a near-infinite number of points. [Stephen] recommends verifying the tracks with another tool once calculated to ensure accuracy. The tool is accessible here, and the code is up on GitHub for your perusal.

Perhaps now you need a cost-effective satellite-tracking antenna? [Paul] has you covered.