Hong Kong Hacker Builds Electric Vehicle From Waste

Recycled Parts Round Out Soap Shaped Electric Car

[Handy Geng] has a knack for fitting his creations with a large percentage of recycled material. And as is exemplified by the video below the break, he also loves to mix the practical with the whimsical.

Using parts salvaged from motor scooters, trash heaps, and likely many other sources, [Handy] has put together a small vehicle that he himself describes as looking like a bar of soap as it slips across the floor. You’ll agree when you see the independent front and rear steering at work, allowing the car’s front and rear to be driven and steered on their own. Crabbing sideways, driving diagonally, and we’re guessing spinning in place are possible.

What’s also clear in the video below is that [Handy] is a talented fabricator. While not taking himself too seriously (keep an eye out for the 360° selfie cam!) he clearly takes pride in the work. [Handy]’s workshop and skill set show that at the core, he’s quite serious about his craft. We appreciate the creative use of scrap materials used in such an inspiring build. The turn signals and “communicator” hand is absolutely marvelous.

If building with recycled materials is your thing, then you’ll love the Trash Printer, too. Thanks to [Fosselius] for the tip!

Continue reading “Recycled Parts Round Out Soap Shaped Electric Car”

What It Takes: Turning A Hatchback Into A Race Car

We’ve spoken a lot about building race cars here at Hackaday, but what does it actually look like to go out and do it? The boys from [Bad Obsession Motorsport] dived into that very question with their Bargain Racement series last year.

The CityCar Cup championship aims to keep entry costs low and racing competitive by racing cheap hatchbacks with a strict ruleset. Credit: Nankang Tyre CityCar Cup

The series follows the duo as they build a Citroen C1 into a competitive race car to take on the City Car Cup, an entry-level racing series focused on keeping the field competitive and the racing close.

Even at this level, there’s plenty to do to prep the car for competition. The rollcage needs to be installed, seats changed out for race-spec gear, and plenty of wiring to do as well. [Nik] and [Richard] have plenty of experience in the field of motorsport, and shine a great light on how to do the job, and do it right.

All in all, building the car cost £5995 pounds, starting from a used £850 Citroen C1. However, actually going racing costs more than that. Between race suits and boots, a helmet, club memberships and race entry fees, it cost a full £8273 to get to the first race. It’s steep, though much of those costs are upfront. Keep the car off the walls and year on year, you only need to keep paying for entry fees, memberships and consumables like fuel and tires.

It’s a great look at everything from building a race car, to testing and then actually competing as well. It serves as an excellent real-world example of what we talk about in our series on how to get into cars, which just recently touched on prepping a car for endurance competition. Video after the break.

Continue reading “What It Takes: Turning A Hatchback Into A Race Car”

How To Get Into Cars: Endurance Racing Builds

Many an automotive enthusiast finds themselves at a track day eventually. Typically, this involves competing against the clock to better one’s laptimes in short sessions throughout the day. Such events are fun, but it often creates a perishing thirst for a greater level of competition.

Regularity and endurance events are often the next step up for a lot of people. These events involve long runs at race pace that stress a car to (or beyond!) the breaking point. Careful preparation is required if one is to see out the race to the chequered flag. Let’s break down what you’ll need to consider.

Continue reading “How To Get Into Cars: Endurance Racing Builds”

RC car without a top, showing electronics inside.

Fast Indoor Robot Watches Ceiling Lights, Instead Of The Road

[Andy]’s robot is an autonomous RC car, and he shares the localization algorithm he developed to help the car keep track of itself while it zips crazily around an indoor racetrack. Since a robot like this is perfectly capable of driving faster than it can sense, his localization method is the secret to pouring on additional speed without worrying about the car losing itself.

The regular pattern of ceiling lights makes a good foundation for the system to localize itself.

To pull this off, [Andy] uses a camera with a fisheye lens aimed up towards the ceiling, and the video is processed on a Raspberry Pi 3. His implementation is slick enough that it only takes about 1 millisecond to do a localization update, netting a precision on the order of a few centimeters. It’s sort of like a fast indoor GPS, using math to infer position based on the movement of ceiling lights.

To be useful for racing, this localization method needs to be combined with a map of the racetrack itself, which [Andy] cleverly builds by manually driving the car around the track while building the localization data. Once that is in place, the car has all it needs to autonomously zip around.

Interested in the nitty-gritty details? You’re in luck, because all of the math behind [Andy]’s algorithm is explained on the project page linked above, and the GitHub repository for [Andy]’s autonomous car has all the implementation details.

The system is location-dependent, but it works so well that [Andy] considers track localization a solved problem. Watch the system in action in the two videos embedded below.

Continue reading “Fast Indoor Robot Watches Ceiling Lights, Instead Of The Road”

Ford Maverick Welcomes DIY Spirit

We’ve featured a lot of car hacks on these pages, most would void the warranty and none of it with explicit factory support. Against that background, Ford’s upcoming Maverick is unique: a major manufacturer has invited owners to unleash their do-it-yourself spirit. It is one of several aspects that led [Jason Torchinsky] of Jalopnik to proclaim The 2022 Ford Maverick Is An Honest, Cheap, Multitool Of A Vehicle And I’m All For It.

There are two primary parts to Ford’s DIY invitation. Inside the cabin are several locations for a dovetail mount called “Ford Integrated Tether System” (FITS). Naturally Ford will be selling their own FITS accessories, but they also expect people to create and 3D-print designs addressing needs unmet by factory kits. CAD files for FITS dimensions are promised, but any maker experienced with a caliper should have little trouble.

Another part of Ford’s DIY invitation is in the cargo area, whose sides were stamped with slots for lumber beams supporting projects like a ~$45 bike rack. There are also threaded bolt holes already in the bed, no drilling or tapping into sheet metal necessary. Behind a few small plastic doors are wires to supply 12 V DC power without the risk of splicing into factory harnesses.

There will always be wild car hacks like turning a sedan into a pickup truck. But it’s great to lower the barrier of entry for milder hacks with these small and very welcome features. QR codes on a sticker takes us to Ford’s collection of video instructions to get things started. Naturally if this idea takes off other people will post many more on their own YouTube channels. We like where Ford wants to go with this, and we would love to see such DIY-friendliness spread across the auto industry. A few Ford videos explaining design intent in this area after the break.

[Title image: Ford Motor Company]

Continue reading “Ford Maverick Welcomes DIY Spirit”

Exploring An Aftermarket LED Headlight Retrofit Kit

There’s plenty of debate about drop-in LED headlight bulbs, especially when they’re used with older reflector housings that were designed for halogen bulbs. Whether or not you personally feel the ultra-bright lights are a nuisance, or even dangerous, one thing we can all agree on is that they’re clearly the result of some impressive engineering.

Which is why we were fascinated to see the teardown [TechChick] did on a “Ultra 2 LED” retrofit from GTR Lighting. Apparently one of the diodes was failing, and as part of the warranty replacement process, she was informed she had to make it completely inoperable. Sounds like a teardown dream come true. If a manufacturer ever told us we needed to take something apart with extreme prejudice and provide photographic evidence that the deed was done, we’d be all too happy to oblige.

The driver itself ended up being completely filled with potting compound, so she doesn’t spend much time there. Some will no doubt be annoyed that [TechChick] didn’t break out the small pointy implements and dig all that compound out, but we all pretty much know what to expect when it comes to driving LEDs. The real interesting bit is the bulb itself.

As is common with these high-output automotive LEDs, the Ultra 2 is actively cooled with a small fan that’s actually enclosed within the heatsink. With the fan and the two-piece heatsink removed, she’s able to access the LED module itself. Here, two PCBs are sandwiched back to back with a hollow copper chamber that leads out of the rear of the module. When [TechChick] cut into the copper she said she heard a hiss, and assumed it was some kind of liquid cooling device. Specifically we think it’s a vapor chamber that’s being used to pull heat away from the diodes and into the heatsink at the rear of the module, which speaks to the advanced technology that makes these bulbs possible.

While laser headlights are arguably the future of automotive lighting, it’s going to be quite some time before they trickle down to those of us that don’t own supercars. Until then, when used responsibly, these LED retrofits can inject a bit of cutting-edge tech into your old beater without breaking the bank.

Continue reading “Exploring An Aftermarket LED Headlight Retrofit Kit”

Nissan Leaf Zooms By with 110KW power after Inverter swap and hack

Open Source Hot Rod Mod Gives More Power To EV Owners

Meet [Daniel Öster]. [Daniel] is a self-professed petrolhead. In other words, he’s a hot rodder who can’t leave well enough alone. Just because he’s driving a 2012 Nissan Leaf doesn’t mean he isn’t looking for a bit more kick. Having already upgraded the battery, [Daniel] turned his attention to upgrading the 80KW inverter. Not only was [Daniel] successful, but the work has been documented and the Open Source code made available on GitHub. Part of [Daniel]’s mission is to open up otherwise closed ecosystems and make EV hacking and repair approachable by mere mortals.

To get an extra 50hp, [Daniel] could have just swapped in the 110KW drivetrain from a 2018 or newer Leaf, but a less expensive route of swapping in only the 110KW inverter was chosen. By changing out just the inverter, the modification becomes more affordable for others to do. [Daniel] expertly documents how the new 110KW inverter has to be matched to the existing motor by setting a resolver correction value in the inverter.

Swapping Connectors for the new Inverter
Not for the faint of heart, the inverter swap requires changing connectors to a later style.

Cutting into the wiring harness of a vehicle that one is still making payments on is an exercise reserved for only the most dedicated modders, but a change in connectors between 2012 and 2018 made it necessary. The only tools needed were wire cutters, a soldering iron, heat shrink, and perhaps some liquid courage.

Although the hack was successful, no performance gains were had initially, because the CAN bus signal going to the inverter never told it to provide more than the original 80KW. A CAN bus Man In The Middle attack was done by adding a CAN bridge device that listens to traffic on the CAN bus and bends it to [Daniel]’s will. By multiplying the KW signal by 1.3, the 80KW signal becomes 110KW, and full Ludicrous Speed is achieved! Excellent gains in  0-100kph times are seen, but [Daniel] isn’t done. His next hack will be to put in a 160KW inverter for even more go-pedal madness.

Be sure to watch the introduction video below the break. You might also be interested in Nissan Leaf hacks we’ve featured previously such as retrofitting a fast charging port, salvaging batteries from wrecks, and partly resolving serious charging flaws.

Continue reading “Open Source Hot Rod Mod Gives More Power To EV Owners”