An aluminium frame is visible, supporting several connected pieces of chemistry equipment. At the left, there is a tube containing a clear solution, with a tube leading to a clear tube heated by a gas flame, with another tube leading to a clear bottle, which has a tube leading to a bubbling orange solution.

A Miniature Ostwald Reactor To Make Nitric Acid

Modern fertilizer manufacturing uses the Haber-Bosch and Ostwald processes to fix aerial nitrogen as ammonia, then oxidize the ammonia to nitric acid. Having already created a Haber-Bosch reactor for ammonia production, [Markus Bindhammer] took the obvious next step and created an Ostwald reactor to make nitric acid.

[Markus]’s first step was to build a sturdy frame for his apparatus, since most inexpensive lab stands are light and tip over easily – not a good trait in the best of times, but particularly undesirable when working with nitrogen dioxide and nitric acid. Instead, [Markus] built a frame out of aluminium extrusion, T-nuts, threaded rods, pipe clamps, and a few cut pieces of aluminium.

Once the frame was built, [Markus] mounted a section of quartz glass tubing above a gas burner intended for camping, and connected the output of the quartz tube to a gas washing bottle. The high-temperature resistant quartz tube held a mixture of alumina and platinum wool (as we’ve seen him use before), which acted as a catalyst for the oxidation of ammonia. The input to the tube was connected to a container of ammonia solution, and the output of the gas washing bottle fed into a solution of universal pH indicator. A vacuum ejector pulled a mixture of air and ammonia vapors through the whole system, and a copper wool flashback arrestor kept that mixture from having explosive side reactions.

After [Markus] started up the ejector and lit the burner, it still took a few hours of experimentation to get the conditions right. The issue seems to be that even with catalysis, ammonia won’t oxidize to nitrogen oxides at too low a temperature, and nitrogen oxides break down to nitrogen and oxygen at too high a temperature. Eventually, though, he managed to get the flow rate right and was rewarded with the tell-tale brown fumes of nitrogen dioxide in the gas washing bottle. The universal indicator also turned red, further confirming that he had made nitric acid.

Thanks to the platinum catalyst, this reactor does have the advantage of not relying on high voltages to make nitric acid. Of course, you’ll still need get ammonia somehow.

Big Chemistry: Seawater Desalination

For a world covered in oceans, getting a drink of water on Planet Earth can be surprisingly tricky. Fresh water is hard to come by even on our water world, so much so that most sources are better measured in parts per million than percentages; add together every freshwater lake, river, and stream in the world, and you’d be looking at a mere 0.0066% of all the water on Earth.

Of course, what that really says is that our endowment of saltwater is truly staggering. We have over 1.3 billion cubic kilometers of the stuff, most of it easily accessible to the billion or so people who live within 10 kilometers of a coastline. Untreated, though, saltwater isn’t of much direct use to humans, since we, our domestic animals, and pretty much all our crops thirst only for water a hundred times less saline than seawater.

While nature solved the problem of desalination a long time ago, the natural water cycle turns seawater into freshwater at too slow a pace or in the wrong locations for our needs. While there are simple methods for getting the salt out of seawater, such as distillation, processing seawater on a scale that can provide even a medium-sized city with a steady source of potable water is definitely a job for Big Chemistry.

Continue reading “Big Chemistry: Seawater Desalination”

Saving Green Books From Poison Paranoia

You probably do not need us to tell you that Arsenic is not healthy stuff. This wasn’t always such common knowledge, as for a time in the 19th century a chemical variously known as Paris or Emerald Green, but known to chemists as copper(II) acetoarsenite was a very popular green pigment. While this pigment is obviously not deadly on-contact, given that it’s taken 200 years to raise the alarm about these books (and it used to be used in candy (!)), arsenic is really not something you want in your system. Libraries around the world have been quarantining vintage green books ̶f̶o̶r̶ ̶f̶e̶a̶r̶ ̶b̶i̶b̶l̶i̶o̶p̶h̶i̶l̶i̶es ̶m̶i̶g̶h̶t̶ ̶b̶e̶ ̶t̶e̶m̶p̶t̶e̶d̶ ̶t̶o̶ ̶l̶i̶c̶k̶ ̶t̶h̶e̶m̶  out of an abundance of caution, but researchers at The University of St. Andrews have found a cheaper method to detect the poison pigment than XRF or Raman Spectroscopy previously employed.

The hack is simple, and in retrospect, rather obvious: using a a hand-held vis-IR spectrometer normally used by geologists for mineral ID, they analyzed the spectrum of the compound on book covers. (As an aside, Emerald Green is similar in both arsenic content and color to the mineral conichalcite, which you also should not lick.)  The striking green colour obviously has a strong response in the green range of the spectrum, but other green pigments can as well. A second band in the near-infrared clinches the identification.

A custom solution was then developed, which sadly does not seem to have been documented as of yet. From the press release it sounds like they are using LEDs and photodetectors for color detection in the green and IR at least, but there might be more to it, like a hacked version of common colour sensors that put filters on the photodetectors.

While toxic books will still remain under lock and key, the hope is that with quick and easy identification tens of thousands of currently-quarantined texts that use safer green pigments can be returned to circulation.

Tip of the hat to [Jamie] for the tip off, via the BBC.

Two clear phials are shown in the foreground, next to a glass flask. One phial is labelled “P,” and the other is labelled “N”.

Designing A Hobbyist’s Semiconductor Dopant

[ProjectsInFlight] has been on a mission to make his own semiconductors for about a year now, and recently shared a major step toward that goal: homemade spin-on dopants. Doping semiconductors has traditionally been extremely expensive, requiring either ion-implantation equipment or specialized chemicals for thermal diffusion. [ProjectsInFlight] wanted to use thermal diffusion doping, but first had to formulate a cheaper dopant.

Thermal diffusion doping involves placing a source of dopant atoms (phosphorus or boron in this case) on top of the chip to be doped, heating the chip, and letting the dopant atoms diffuse into the silicon. [ProjectsInFlight] used spin-on glass doping, in which an even layer of precursor chemicals is spin-coated onto the chip. Upon heating, the precursors decompose to leave behind a protective film of glass containing the dopant atoms, which diffuse out of the glass and into the silicon.

After trying a few methods to create a glass layer, [ProjectsInFlight] settled on a composition based on tetraethyl orthosilicate, which we’ve seen used before to create synthetic opals. After finding this method, all he had to do was find the optimal reaction time, heating, pH, and reactant proportions. Several months of experimentation later, he had a working solution.

After some testing, he found that he could bring silicon wafers from their original light doping to heavy doping. This is particularly impressive when you consider that his dopant is about two orders of magnitude cheaper than similar commercial products.

Of course, after doping, you still need to remove the glass layer with an oxide etchant, which we’ve covered before. If you prefer working with lasers, we’ve also seen those used for doping. Continue reading “Designing A Hobbyist’s Semiconductor Dopant”

Falling Down The Land Camera Rabbit Hole

It was such an innocent purchase, a slightly grubby and scuffed grey plastic box with the word “P O L A R O I D” intriguingly printed along its top edge. For a little more than a tenner it was mine, and I’d just bought one of Edwin Land’s instant cameras. The film packs it takes are now a decade out of production, but my Polaroid 104 with its angular 1960s styling and vintage bellows mechanism has all the retro-camera-hacking appeal I need. Straight away I 3D printed an adapter and new back allowing me to use 120 roll film in it, convinced I’d discover in myself a medium format photographic genius.

But who wouldn’t become fascinated with the film it should have had when faced with such a camera? I have form on this front after all, because a similar chance purchase of a defunct-format movie camera a few years ago led me into re-creating its no-longer-manufactured cartridges. I had to know more, both about the instant photos it would have taken, and those film packs. How did they work? Continue reading “Falling Down The Land Camera Rabbit Hole”

Print PLA In PLA With A Giant Molecular Model Kit

It isn’t too often we post a hack that’s just a pure 3D print with no other components, but for this Giant Molecular Model kit by [3D Printy], we’ll make an exception. After all, even if you print with PLA every day, how often do you get to play with its molecular bonds? (If you want to see that molecule, check out the video after the break.)

There are multiple sizes of bonds to represent bond lengths, and two styles: flexible and firm. Flexible bonds are great for multiple covalent bonds, like carbon-carbon bonds in organic molecules. The bonds clip to caps that screw in to the atoms; alternately a bond-cap can screw the atoms together directly. A plethora of atoms is available, in valence values from one to four. The two-bond atom has 180 and 120-degree variations for greater accuracy.  In terms of the chemistry this kit could represent, you’re only limited by your imagination and how long you are willing to spend printing atoms and bonds.

[3D Printy] was kind enough to release the whole lot as CC0 Public Domain, so we might be seeing these at craft fairs, as there’s nothing to keep you from selling the prints. Honestly, we can only hope; from an educational standpoint, this is a much better use of plastic than endless flexy dragons.

If you’d prefer your chemistry toys help you do chemistry, try this fidget spinner centrifuge. Perhaps you’d rather be teaching electronics instead?

Continue reading “Print PLA In PLA With A Giant Molecular Model Kit”

A picture of a single water droplet on top of what appears to be a page from a chemistry text. An orange particle is attached to the right side of the droplet and blue and black tendrils diffuse through the drop from it. Under the water drop, the caption tells us the reaction we're seeing is "K2Cr2O7+ 3H2O2 + 4H2SO4 = K2SO4+Cr2(SO4)3+7H2O+3O2(gas)"

Water Drops Serve As Canvas For Microchemistry Art

If you’re like us and you’ve been wondering where those viral videos of single water drop chemical reactions are coming from, we may have an answer. [yu3375349136], a scientist from Guangdong, has been producing some high quality microchemistry videos that are worth a watch.

While some polyglots out there won’t be phased, we appreciate the captioning for Western audiences using the elemental symbols we all know and love in addition to the Simplified Chinese. Reactions featured are typically colorful, but simple with a limited number of reagents. Being able to watch diffusion of the chemicals through the water drop and the results in the center when more than one chemical is used are mesmerizing.

We do wish there was a bit more substance to the presentation, and we’re aware not all readers will be thrilled to point their devices to Douyin (known outside of China as TikTok) to view them, but we have to admit some of the reactions are beautiful.

If you’re interested in other science-meets-art projects, how about thermal camera landscapes of Iceland, and given the comments on some of these videos, how do you tell if it’s AI or real anyway?