A laboratory benchtop is shown. To the left, there is a distillation column above a collecting flask, with a tube leading from the flask to an adapter. The adapter has a frame holding a glass tube with a teflon stopper at one end, into which a smaller glass tube leads. At the other end of the larger tube is a round flask suspended in an oil bath.

Building A Rotary Evaporator For The Home Lab

The rotary evaporator (rotovap) rarely appears outside of well-provisioned chemistry labs. That means that despite being a fundamentally simple device, their cost generally puts them out of reach for amateur chemists. Nevertheless, they make it much more convenient to remove a solvent from a solution, so [Markus Bindhammer] designed and built his own.

Rotary evaporators have two flasks, one containing the solution to be evaporated, and one that collects the condensed solvent vapors. A rotary joint holds the evaporating flask partially immersed in a heated oil bath and connects the flask’s neck to a fixed vapor duct. Solvent vapors leave the first flask, travel through the duct, condense in a condenser, and collect in the second flask. A motor rotates the first flask, which spreads a thin layer of the solution across the flask walls, increasing the surface area and causing the liquid to evaporate more quickly.

Possibly the trickiest part of the apparatus is the rotary joint, which in [Markus]’s implementation is made of a ground-glass joint adapter surrounded by a 3D-printed gear adapter and two ball bearings. A Teflon stopper fits into one end of the adapter, the evaporation flask clips onto the other end, and a glass tube runs through the stopper. The ball bearings allow the adapter to rotate within a frame, the gear enables a motor to drive it, the Teflon stopper serves as a lubricated seal, and the non-rotating glass tube directs the solvent vapors into the condenser.

The flasks, condenser, and adapters were relatively inexpensive commercial glassware, and the frame that held them in place was primarily made of aluminium extrusion, with a few other pieces of miscellaneous hardware. In [Markus]’s test, the rotovap had no trouble evaporating isopropyl alcohol from one flask to the other.

This isn’t [Markus]’s first time turning a complex piece of scientific equipment into an amateur-accessible project, or, for that matter, making simpler equipment. He’s also taken on several major industrial chemistry processes.

Restoring A Cheap Fume Hood

Semiconductor fabrication is complicated requiring nasty chemicals for everything from dopants to etchants. Working with such chemicals at home is dangerous and after releasing hydrochloride acid fumes into his lab, [ProjectsInFlight] decided the time was right to get one for a mere $200.

I can hear the readers down in the comments already saying, “why not just make one?” But a properly engineered fume hood provides laminar flow which absolutely ensures no leakage of fumes out of the hood. However, such proper engineering comes with an impressive price tag, so the used market was the only choice. This is less dangerous then it sounds as companies are required by both OSHA and the EPA to clean their fume hoods before removal, so no chemical residue should remain after purchase.

Continue reading “Restoring A Cheap Fume Hood”

Applying Thermal Lining To Rocket Tubes Requires A Monstrous DIY Spin-caster

[BPS.space] takes model rocketry seriously, and their rockets tend to get bigger and bigger. If there’s one thing that comes with the territory in DIY rocketry, it’s the constant need to solve new problems.

Coating the inside of a tube evenly with a thick, goopy layer before it cures isn’t easy.

One such problem is how to coat the inside of a rocket motor tube with a thermal liner, and their solution is a machine they made and called the Limb Remover 6000 on account of its ability to spin an 18 kg metal tube at up to 1,000 rpm which is certainly enough to, well, you know.

One problem is that the mixture for the thermal liner is extremely thick and goopy, and doesn’t pour very well. To get an even layer inside a tube requires spin-casting, which is a process of putting the goop inside, then spinning the tube at high speed to evenly distribute the goop before it cures. While conceptually straightforward, this particular spin-casting job has a few troublesome difficulties.

For one thing, the uncured thermal liner is so thick and flows so poorly that it can’t simply be poured in to let the spinning do all the work of spreading it out. It needs to be distributed as evenly as possible up front, and [BPS.space] achieves that with what is essentially a giant syringe that is moved the length of the tube while extruding the uncured liner while the clock is ticking. If that sounds like a cumbersome job, that’s because it is.

The first attempt ended up scrapped but helped identify a number of shortcomings. After making various improvements the second went much better and was successfully tested with a 12 second burn that left the tube not only un-melted, but cool enough to briefly touch after a few minutes. There are still improvements to be made, but overall it’s one less problem to solve.

We’re always happy to see progress from [BPS.space], especially milestones like successfully (and propulsively) landing a model rocket, and we look forward to many more.

Continue reading “Applying Thermal Lining To Rocket Tubes Requires A Monstrous DIY Spin-caster”

The bed of a small CNC machine is shown. A plastic tub is on the bed, and in the tub is a sheet of metal under a pale green solution. In place of the spindle of the CNC, there is a rectangular orange tube extending down into the solution. A red wire runs to this tube, and a black wire runs to the sheet of metal in the tub.

Painting In Metal With Selective Electroplating

Most research on electroplating tries to find ways to make it plate parts more uniformly. [Ajc150] took the opposite direction, though, with his selective electroplating project, which uses an electrode mounted on a CNC motion system to electrochemically print images onto a metal sheet (GitHub repository).

Normally, selective electroplating would use a mask, but masks don’t allow gradients to be deposited. However, electroplating tends to occur most heavily at the point closest to the anode, and the effect gets stronger the closer the anode is. To take advantage of this effect, [ajc150] replaced the router of an inexpensive 3018 CNC machine with a nickel anode, mounted an electrolyte bath in the workspace, and laid a flat steel cathode in it. When the anode moves close to a certain point on the steel cathode, most of the plating takes place there.

To actually print an image with this setup, [ajc150] wrote a Python program to convert an image into set of G-code instructions for the CNC. The darker a pixel of the image was, the longer the electrode would spend over the corresponding part of the metal sheet. Since darkness wasn’t linearly proportional to plating time, the program used a gamma correction function to adjust times, though this did require [ajc150] to recalibrate the setup after each change. The system works well enough to print recognizable images, but still has room for improvement. In particular, [ajc150] would like to extend this to a faster multi-nozzle system, and have the algorithm take into account spillover between the pixel being plated and its neighbors.

This general technique is reminiscent of a metal 3D printing method we’ve seen before. We more frequently see this process run in reverse to cut metal.

A cylindrical red furnace is in the center of the image. To the left of it is a black power supply. A stand is in front of the furnace, with an arm extending over the furnace. To the right of the furnace, a pair of green-handled crucible tongs sit on an aluminium pan.

The Hall-Héroult Process On A Home Scale

Although Charles Hall conducted his first successful run of the Hall-Héroult aluminium smelting process in the woodshed behind his house, it has ever since remained mostly out of reach of home chemists. It does involve electrolysis at temperatures above 1000 ℃, and can involve some frighteningly toxic chemicals, but as [Maurycy Z] demonstrates, an amateur can now perform it a bit more conveniently than Hall could.

[Maurycy] started by finding a natural source of aluminium, in this case aluminosilicate clay. He washed the clay and soaked it in warm hydrochloric acid for two days to extract the aluminium as a chloride. This also extracted quite a bit of iron, so [Maurycy] added sodium hydroxide to the solution until both aluminium and iron precipitated as hydroxides, added more sodium hydroxide until the aluminium hydroxide redissolved, filtered the solution to remove iron hydroxide, and finally added hydrochloric acid to the solution to precipitate aluminium hydroxide. He heated the aluminium hydroxide to about 800 ℃ to decompose it into the alumina, the starting material for electrolysis.

To turn this into aluminium metal, [Maurycy] used molten salt electrolysis. Alumina melts at a much higher temperature than [Maurycy]’s furnace could reach, so he used cryolite as a flux. He mixed this with his alumina and used an electric furnace to melt it in a graphite crucible. He used the crucible itself as the cathode, and a graphite rod as an anode. He does warn that this process can produce small amounts of hydrogen fluoride and fluorocarbons, so that “doing the electrolysis without ventilation is a great way to poison yourself in new and exciting ways.” The first run didn’t produce anything, but on a second attempt with a larger anode, 20 minutes of electrolysis produced 0.29 grams of aluminium metal.

[Maurycy]’s process follows the industrial Hall-Héroult process quite closely, though he does use a different procedure to purify his raw materials. If you aren’t interested in smelting aluminium, you can still cast it with a microwave oven.

Researching Glow-Powder Left A Few Scars

Content warning: Human alteration and scalpels.
General warning: We are not speaking as doctors. Or lawyers.

If you watch sci-fi, you probably do not have to think hard to conjure a scene in a trendy bar where the patrons have glowing make-up or tattoos. That bit of futuristic flair was possible years ago with UV-reactive tattoo ink, but it has the unfortunate tendency to permanently fade faster than traditional ink. [Miana], a biohacker, wanted something that could last forever and glow on its own. After months of research and testing, she presents a technique with a silica-coated powder and scarification. Reddit post with graphic content.

Continue reading “Researching Glow-Powder Left A Few Scars”

An aluminium frame is visible, supporting several connected pieces of chemistry equipment. At the left, there is a tube containing a clear solution, with a tube leading to a clear tube heated by a gas flame, with another tube leading to a clear bottle, which has a tube leading to a bubbling orange solution.

A Miniature Ostwald Reactor To Make Nitric Acid

Modern fertilizer manufacturing uses the Haber-Bosch and Ostwald processes to fix aerial nitrogen as ammonia, then oxidize the ammonia to nitric acid. Having already created a Haber-Bosch reactor for ammonia production, [Markus Bindhammer] took the obvious next step and created an Ostwald reactor to make nitric acid.

[Markus]’s first step was to build a sturdy frame for his apparatus, since most inexpensive lab stands are light and tip over easily – not a good trait in the best of times, but particularly undesirable when working with nitrogen dioxide and nitric acid. Instead, [Markus] built a frame out of aluminium extrusion, T-nuts, threaded rods, pipe clamps, and a few cut pieces of aluminium.

Once the frame was built, [Markus] mounted a section of quartz glass tubing above a gas burner intended for camping, and connected the output of the quartz tube to a gas washing bottle. The high-temperature resistant quartz tube held a mixture of alumina and platinum wool (as we’ve seen him use before), which acted as a catalyst for the oxidation of ammonia. The input to the tube was connected to a container of ammonia solution, and the output of the gas washing bottle fed into a solution of universal pH indicator. A vacuum ejector pulled a mixture of air and ammonia vapors through the whole system, and a copper wool flashback arrestor kept that mixture from having explosive side reactions.

After [Markus] started up the ejector and lit the burner, it still took a few hours of experimentation to get the conditions right. The issue seems to be that even with catalysis, ammonia won’t oxidize to nitrogen oxides at too low a temperature, and nitrogen oxides break down to nitrogen and oxygen at too high a temperature. Eventually, though, he managed to get the flow rate right and was rewarded with the tell-tale brown fumes of nitrogen dioxide in the gas washing bottle. The universal indicator also turned red, further confirming that he had made nitric acid.

Thanks to the platinum catalyst, this reactor does have the advantage of not relying on high voltages to make nitric acid. Of course, you’ll still need get ammonia somehow.