Ask Hackaday: How Much Would You Stake On An Online Retailer

On the bench where this is being written, there’s a Mitutoyo vernier caliper. It’s the base model with a proper vernier scale, but it’s beautifully made, and it’s enjoyable to see younger hardware hackers puzzle over how to use it. It cost about thirty British pounds a few years ago, but when it comes to quality metrology instruments that’s really cheap. The sky really is the limit for those in search of ultimate accuracy and precision. We can see then why this Redditor was upset when the $400 Mitutoyo they ordered from Amazon turned out to be nothing of the sort. We can’t even call it a fake, it’s just a very cheap instrument stuffed oddly, into a genuine Mitutoyo box.

Naturally we hope they received a refund, but it does raise the question when buying from large online retailers; how much are we prepared to risk? We buy plenty of stuff from AliExpress in out community, but in that case the slight element of chance which comes with random Chinese manufacture is offset by the low prices. Meanwhile the likes of Amazon have worked hard to establish themselves as trusted brands, but is that misplaced? They are after all simply clearing houses for third party products, and evidently have little care for what’s in the box. The £30 base model caliper mentioned above is an acceptable punt, but at what point should we go to a specialist and pay more for some confidence in the product?

It’s a question worth pondering as we hit the “Buy now” button without thinking. What’s your view? Let us know in the comments. Meanwhile, we can all be caught with our online purchases.

Thanks [JohnU] for the tip.

Ask Hackaday: How Do You Make Front Panels?

We’ll admit it. The closer a project is to completion, the less enthusiasm we have for it. Once the main design is clearly going to work on a breadboard, we’re ready to move on to the next one. We don’t mind the PCB layout, especially with modern tools. However, once the board is done, you have to do the case. Paradoxically, this was easier in the old days because you just picked some stock box, drilled some holes, and while it looked terrible, it was relatively easy.

Today, the bar is much higher. You’ll probably 3D print or laser cut an enclosure. If it looks no better than what you did in the 1970s, you won’t win many admirers. We routinely cover projects that could easily pass for commercial products. So how do you do it?

The Parts

The enclosure may even be the easy part. There are plenty of scripts and generators that will make you a nice box that meets your specifications. You can probably even get the holes made as you build. Back in the day, it was a challenge to cut odd-shaped holes for things like serial port connectors. Now, no problem. The printer or laser will just make a hole with any shape you like. You may even want to try a new angle on 3D printing.

Mounting the PCB isn’t that hard, either. With 3D printing, you can create standoffs, but even if you laser cut, you can easily use conventional standoffs. In a pinch, we’ve used long bolts with nuts.

The real problem, it seems to us, is the front panel. Only Star Trek can get away with front panels containing a bunch of knobs and dials with no markings. And although we call them “front” panels, sometimes you need markings on the back or even the sides, too. Continue reading “Ask Hackaday: How Do You Make Front Panels?”

Ask Hackaday: Do You Calibrate Your Instruments?

Like many of you, I have a bench full of electronic instruments. The newest is my Rigol oscilloscope, only a few years old, while the oldest is probably my RF signal generator that dates from some time in the early 1950s. Some of those instruments have been with me for decades, and have been crucial in the gestation of countless projects.

If I follow the manufacturer’s recommendations then just like that PAT tester I should have them calibrated frequently. This process involves sending them off to a specialised lab where their readings are compared to a standard and they are adjusted accordingly, and when they return I know I can trust their readings. It’s important if you work in an industry where everything must be verified, for example I’m certain the folks down the road at Airbus use meticulously calibrated instruments when making assemblies for their aircraft, because there is no room for error in a safety critical application at 20000 feet.

But on my bench? Not so much, nobody is likely to face danger if my frequency counter has drifted by a few Hz. Continue reading “Ask Hackaday: Do You Calibrate Your Instruments?”

Ask Hackaday: What Do You Do When You Can’t Solder?

Ah, soldering. It’s great for sticking surface mount parts to a PCB, and it’s really great for holding component legs in a plated through-hole. It also does a pretty great job of holding two spliced wires together.

With that said, it can be a bit of a fussy process. There are all manner of YouTube videos and image tutorials on the “properest” way to achieve this job. Maybe it’s the classic Lineman’s Splice, maybe it’s some NASA-approved method, or maybe it’s one of those ridiculous ones where you braid all the copper strands together, solder it all up, and then realize you’ve forgotten to put the heat shrink on first.

Sure, soldering’s all well and good. But what about some of the other ways to join a pair of wires?

Continue reading “Ask Hackaday: What Do You Do When You Can’t Solder?”

Ask Hackaday: Why Retrocomputing?

I recently dropped in on one of the Vintage Computer Festival events, and it made me think about why people — including myself — are fascinated with old computer technology. In my case, I lived through a lot of it, and many of the people milling around at VCF did too, so it could just be nostalgia. But there were also young people there.

Out of curiosity, I asked people about the appeal of the old computers on display there. Overwhelmingly, the answer was: you can understand the whole system readily. Imagine how long it would take you to learn all the hardware and software details of your current desktop computer CPU. Then add your GPU, the mass storage controllers, and your network interface. I don’t mean knowing the part numbers, specs, and other trivialities. I mean being able to program, repair, and even enhance it.

Continue reading “Ask Hackaday: Why Retrocomputing?”

Ask Hackaday: What’s Linux Anyway?

Any time we mention Linux, it is a fair bet we will get a few comments from people unhappy that we didn’t refer to it as GNU/Linux or with some other appellation. To be fair, they aren’t wrong. Linux is a kernel. Much of what we think of as a Linux desktop OS is really from other sources, including, but not limited to, GNU. We thought about this after reading a report from [The Register] that Linux has nearly half of the desktop OS Linux market. Wait, what?

If you are like us, you probably think that’s a typo. It isn’t. But the more you think about it, the less sense it makes. You know that half of the world’s desktops don’t run Linux. But maybe they mean Unix? Nope. So how can Linux have almost half of the Linux market? That’s like saying nearly half of Hackaday readers read Hackaday, right?

Continue reading “Ask Hackaday: What’s Linux Anyway?”

Ask Hackaday: Learn Assembly First, Last, Or Never?

A few days ago, I ran into an online post where someone pointed out the book “Learn to Program with Assembly” and asked if anyone had ever learned assembly language as a first programming language. I had to smile because, if you are a certain age, your first language may well have been assembly, even if it was assembly for machines that never existed.

Of course, that was a long time ago. It is more likely, these days, if you are over 40, you might have learned BASIC first. Go younger, and you start skewing towards Java, Javascript, or even C. It got me thinking, though: should people learn assembly, and if so, when?

Continue reading “Ask Hackaday: Learn Assembly First, Last, Or Never?”