Displays We Love Hacking: Parallel RGB

You might have seen old display panels, from 3″ to 10″, with 40-pin FFC connectors where every pin seems to be used for some data signal. We call these displays parallel RGB, or TTL RGB, or DPI, and you can find them in higher-power MCU, Raspberry Pi, and other Linux SBC projects. You deserve to know what to do with those – let’s take a look.

The idea is simple – this interface requires you to constantly send a stream of pixels to the display, and you need to send those pixels through a parallel bus. You can send up to 8 bits per color channel per pixel, which makes for 24 bits, and the 24-bit mode is indeed the standard, but in practice, many parallel RGB implementations don’t bother with more than 5-6 bits of color – two common kinds of parallel RGB links are RGB565 and RGB666. The parallel RGB interface is a very straightforward approach to sending pixels to your display, and in many cases, you can also convert parallel RGB to LVDS or VGA interfaces relatively easily!

If you’re new to it, the easiest way you can drive a parallel RGB display is from a Raspberry Pi, where the parallel RGB interface is known as DPI. This is how 800 x 480 display Pi HATs like the Pimoroni HyperPixel work – they use up almost all of the GPIOs on your Pi, but you get a reasonably high-resolution display with a low power footprint, and you don’t need any intermediate ICs either. FPGAs and some higher-grade MCUs also often have parallel RGB output capability, and surely, someone could even use the RP2040 PIO as well!

Throughout the last decade, parallel RGB has been used less and less, but you will still encounter it – maybe you’re working with an old game console like the PSP and would like to put new guts into it, maybe you’re playing with some tasty display that uses parallel RGB, or maybe you’d like to convert parallel RGB into something else while treating it with respect! Let’s go through what makes parallel RGB tick, what tools you have got to work with it, and a few tips and tricks. Continue reading “Displays We Love Hacking: Parallel RGB”

FLOSS Weekly Episode 767: Owntracks, Are We There Yet?

This week Jonathan Bennett and Jeff Massie talk with JP Mens about Owntracks, the collection of programs that lets you take back control of your own location data. It’s built around the simple idea of taking position data from a mobile phone or other data source, sending it over MQTT to a central server, and logging that data to a simple data store.

From there, you can share it as trips, mark points of interest, play back your movement in a web browser, and more. And because it’s just JSON inside MQTT, it’s pretty trivial to make a connector to interface with other projects, like Home Assistant. We’ve even covered the process!

Continue reading “FLOSS Weekly Episode 767: Owntracks, Are We There Yet?”

Ask Hackaday: What About Imperfect Features?

Throughout the last few years’ time, I’ve been seeing sparks of an eternal discussion here and there. It’s a nuanced one, but if I could summarize, it’s about different feature development strategies we can follow to design things, especially if they’re aimed at a larger market. Specifically – when adding a feature, how complete and perfect should it be?

A while back, I read a Mastodon thread about VLC not implementing backwards per-frame skipping. At the surface level, it’s about an indignant user asking – what’s the deal with VLC not having a “go back a frame” button? A ton of video players have this feature implemented. There’s a forum thread linked, and, reading it could leave you with a good few conflicting emotions. Here’s a recap.

In what appears to be one of multiple threads asking about a ‘previous frame’ button in VLC, there’s an 82-post discussion involving multiple different VLC developers. The users’ argument is that it appears to be clearly technically possible to add a ‘previous frame’ button in practice, and the developers’ argument is that it’s technologically complex to implement in some cases – for certain formats, even impossible to implement! Let’s go into the developers’ stated reasoning in more details, then – here’s what you can find in the thread, to the best of my ability.

Continue reading “Ask Hackaday: What About Imperfect Features?”

Could Solar-Powered Airships Offer Cleaner Travel?

The blimp, the airship, the dirigible. Whatever you call them, you probably don’t find yourself thinking about them too often. They were an easy way to get airborne, predating the invention of the airplane by decades. And yet, they suffered—they were too slow, too cumbersome, and often too dangerous to compete once conventional planes hit the scene.

And yet! Here you are reading about airships once more, because some people aren’t giving up on this most hilarious manner of air travel. Yes, it’s 2024, and airship projects continue apace even in the face of the overwhelming superiority of the airplane.

Continue reading “Could Solar-Powered Airships Offer Cleaner Travel?”

Switching Regulators For Dummies

We often use linear regulators in our designs. They are cheap and simple – you put the regulator chip itself on the board, add two capacitors, and get a voltage. Linear regulators are imperfect, of course – they can’t help but waste the voltage difference as heat, for a start, which straight up excludes them for high-current purposes, or significant voltage difference conversions, unless you have a hefty heatsink handy. They also can’t boost voltage, which means you can only go from high to low – a bit of a disappointment.

Of course, we haven’t been just throwing our hands up in the air if a linear regulator doesn’t fit our purpose. Switching regulators have none of these disadvantages, which is why your mobile phone alone has a few dozen of these. They are way more efficient and hi-tec, able to convert one voltage into another while losing hardly any power into heat. All that you need to do is switch an inductor at a somewhat high frequency!

However, for some, switching regulators might look a bit intimidating. They tend to have higher standards for board layout compared to linear regulators, and, they do need an inductor – sometimes, a few more components too. Inductors alone are somewhat intimidating components, with a fair few more parameters than we’d expect, and you might get confused when looking into adding a switching regulator to your circuit.

No more! In this article, I shall give you the switching regulator basics, remove any fog of war that might be clouding your vision, and show you just how easily you can get a good few amps at your favourite voltage whenever you need it. Continue reading “Switching Regulators For Dummies”

X-Ray Investigations Hack Chat

Join us on Wednesday, January 24 at noon Pacific for the X-Ray Investigation Hack Chat with Ahron Wayne!

It’s hard to imagine a world where we didn’t figure out how to use X-rays to peer inside things. Before Röntgen’s discovery that X-rays could penetrate living tissue, doctors had only limited (and often unpleasant) ways to get a look at what was going on inside the human body, and few of us would want to return to those days.

As fantastically useful as X-rays and later computed tomography (CT) became in medicine, it didn’t take too long for other uses for the technology to come along. Non-clinical applications for X-ray and CT abound, including their use in non-invasively exploring relics of immense archaeological value. One recent effort in this space that gained a lot of coverage in the press was the combination of CT imaging and machine learning to read the ink inside carbonized papyrus scrolls from the ruins of Pompeii.

join-hack-chatThe result was the “Vesuvius Challenge,” where different teams looked for techniques to virtually unwrap the roasted relics. Ahron’s contribution to the project was a little unusual — he bought a used desktop CT scanner, fixed it up, and started experimenting with reading ink from the carbonized remains of simulated papyrus scrolls. In other words, he made some scrolls, cooked them to beyond well-done in the oven, and tried to understand what happens to ink on papyrus that gets blasted by a volcano. If that’s not enough to get you to stop by the Hack Chat when Ahron joins us, we’re not sure what else would be! Suffice it to say we’re pretty excited about what Ahron has to say about DIY CT,  X-rays, collaborative open-source citizen science, and unwrapping the mysteries of Pompeii.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, January 24 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Featured image: Daderot, CC0, via Wikimedia Commons

Hackaday Links Column Banner

Hackaday Links: January 21, 2024

Have you noticed any apps missing from your Android phone lately? We haven’t but then again, we try to keep the number of apps on our phone to a minimum, just because it seems like the prudent thing to do. But apparently, Google is summarily removing apps from the Play Store, often taking the extra step of silently removing the apps from phones. The article, which seems to focus mainly on games, and has a particular bone to pick about the removal of RPG Wayward Souls, isn’t clear about how widespread the deletions are, or what exactly the reason behind the removals could be. But they sure are exercised about it, and rightly so since in some cases the deleted games have actually been paid for by the users, and Google pretty much says that if you think you’re getting a refund, think again. They make some interesting points, such as this being the very definition of larceny, while also acknowledging that in all likelihood Google has a get-out-of-jail-free card buried in some EULA somewhere permitting them to do exactly what they’re doing. Google’s gonna Google, right?

Continue reading “Hackaday Links: January 21, 2024”