Hackaday Links Column Banner

Hackaday Links: February 3, 2019

Once technology that was only available to expensive design teams, and high-end engineering work, 3D printers are now readily available to anyone. Designing a physical prototype with a 3D printer is now something anyone can afford. Did I say anyone? Yes, anyone, even the people trying to build perpetual motion machines. Here’s one on Kickstarter powered by physics. It’s repelling magnets turning wheels.

The study and development of Artificial Intelligence began in the late 1950s and early 1960s. There were conferences, there were talks, colloquium, journals, the works. It was the beginning of a golden age. That came to a screeching halt sometime around 1985. Now, we’re in a new golden age of AI. There’s even a conference. It’s being hosted by [Jeff Bezos], as the alternative, public version of the MARS (for Machine Learning, Automation, Robotics, and Space) conference. Read that link. The phrase, ‘the Bilderberg conference of California’ is in there.

A new Project Binky? Can it be true? Yes, it’s episode 22. The center console is in, the dash is in, and the doors look somewhat finished. What’s the deal this time? A bumpin’ stereo. Wiring! Milliput! It’s English blokes in a shed doing fabrication, your favorite genre of video.

Aaaay, wait a minute. Have you heard about KiCon? Yes, there will be a KiCad user conference. It’s in Chicago, April 26th and 27th, and it’s all about KiCad scripts, settings, tools, techniques, and triumphs. There’s a call for talks, although you shouldn’t try to submit a workshop discussing the difference between ‘Kai-Cad’ and ‘Key-Cad’. That workshop has already been rejected.

Have a 25 meter satellite dish lying around in your backyard? Of course you do. Well, you can hunt for satellites with that thing and a USB TV tuner. The SatNOGS team has been working with a (radio) observatory in the Netherlands, and they’re getting radio signals from overhead satellites. Not bad, and there are, actually, a surprising number of unused large radio dishes out there. Luckily, they’re mostly historic sites.

The Craziest Live Soldering Demo Is The Cyborg Ring

You can define the word crazy in myriad ways. Some would say using SMD resistors and QFN microcontrollers as structural elements is  crazy. Some would say hand soldering QFN is crazy, much less trying to do it on edge rather than in the orientation the footprint is designed for. And of course doing it live on stage in front of people who eat flux for breakfast is just bonkers. But Zach did it anyway and I’m delighted he did.

This is the cyborg ring, and it’s a one-of-a-kind leap in imagination — the kind of leap people have come to expect from Zach Fredin who modeled neurons on PCBs, depopulated an SMD LED matrix and airwired it, and replaced his ThinkPad fingerprint reader with an ARM debugger port. The construction leverages the precise nature of manufactured parts: the ATtiny85 that drives the ring is exactly twice the width of an 0805 component. This means he can bridge the two circuit boards that make up the ring with the QFN microcontroller, and then use two 10M Ohm resistors as structural spacers in a few places around the ring. The jewels in this gem of a project are red LEDs that can be addressed in an animated pattern.

There’s an adage that all live talk demos are doomed to fail, and indeed the uC in this project doesn’t want to speak to the programmer at the end of the 9-minute exhibition. But Zach did manage to solder the two halves on the ring together live on stage, and it’s worth enduring the camera issues and low starting volume at the start of this livestream to watch him perform some crazy magic. Good on you Zach for putting yourself out there and showing everyone that there’s more than one way to stack resistors.

If this demo leaves you wanting to hear more of what Zach’s adventures, we recommend checking out his 2016 Supercon talk on the Neurobytes development and manufacturing process.

Continue reading “The Craziest Live Soldering Demo Is The Cyborg Ring”

Those Voices In Your Head Might Be Lasers

What if I told you that you can get rid of your headphones and still listen to music privately, just by shooting lasers at your ears?

The trick here is something called the photoacoustic effect. When certain materials absorb light — or any electromagnetic radiation — that is either pulsed or modulated in intensity, the material will give off a sound. Sometimes not much of a sound, but a sound. This effect is useful for spectroscopy, biomedical imaging, and the study of photosynthesis. MIT researchers are using this effect to beam sound directly into people’s ears. It could lead to devices that deliver an audio message to specific people with no hardware on the receiving end. But for now, ditching those AirPods for LaserPods remains science fiction.

There are a few mechanisms that explain the photoacoustic effect, but the simple explanation is the energy causes localized heating and cooling, the material microscopically expands and contracts, and that causes pressure changes in the sample and the surrounding air. Saying pressure waves in air is just a fancy way of explaining sound.

Continue reading “Those Voices In Your Head Might Be Lasers”

Hackaday Podcast 004: Taking The Blue Pill, Abusing Resistors, And Not Finding Drones

Catch up on your Hackaday with this week’s podcast. Mike and Elliot riff on the Bluepill (ST32F103 boards), blackest of black paints, hand-crafted sorting machines, a 3D printer bed leveling system that abuses some 2512 resistors, how cyborgs are going mainstream, and the need for more evidence around airport drone sightings.

Stream or download Episode 4 here, and subscribe to Hackaday on your favorite podcasting platform! You’ll find show notes after the break.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 004: Taking The Blue Pill, Abusing Resistors, And Not Finding Drones”

AI Patent Trolls Now On The Job For Drug Companies

Love it or loathe it, the pharmaceutical industry is really good at protecting its intellectual property. Drug companies pour billions into discovering new drugs and bringing them to market, and they do whatever it takes to make sure they have exclusive positions to profit from their innovations for as long a possible. Patent applications are meticulously crafted to keep the competition at bay for as long as possible, which is why it often takes ages for cheaper generic versions of blockbuster medications to hit the market, to the chagrin of patients, insurers, and policymakers alike.

Drug companies now appear poised to benefit from the artificial intelligence revolution to solidify their patent positions even further. New computational methods are being employed to not only plan the synthesis of new drugs, but to also find alternative pathways to the same end product that might present a patent loophole. AI just might change the face of drug development in the near future, and not necessarily for the better.

Continue reading “AI Patent Trolls Now On The Job For Drug Companies”

How To Make Your Own Springs For Extruded Rail T-Nuts

Open-Source Extruded Profile systems are a mature breed these days. With Openbuilds, Makerslide, and Openbeam, we’ve got plenty of systems to choose from; and Amazon and Alibaba are coming in strong with lots of generic interchangeable parts. These open-source framing systems have borrowed tricks from some decades-old industry players like Rexroth and 80/20. But from all they’ve gleaned, there’s still one trick they haven’t snagged yet: affordable springloaded T-nuts.

I’ve discussed a few tricks when working with these systems before, and Roger Cheng came up with a 3D printed technique for working with T-nuts. But today I’ll take another step and show you how to make our own springs for VSlot rail nuts.

Continue reading “How To Make Your Own Springs For Extruded Rail T-Nuts”

Plastics: PETG

You’d be hard-pressed to walk down nearly any aisle of a modern food store without coming across something made of plastic. From jars of peanut butter to bottles of soda, along with the trays that hold cookies firmly in place to prevent breakage or let a meal go directly from freezer to microwave, food is often in very close contact with a plastic that is specifically engineered for the job: polyethylene terephthalate, or PET.

For makers of non-food objects, PET and more importantly its derivative, PETG, also happen to have excellent properties that make them the superior choice for 3D-printing filament for some applications. Here’s a look at the chemistry of polyester resins, and how just one slight change can turn a synthetic fiber into a rather useful 3D-printing filament.

Continue reading “Plastics: PETG”