Building A Monster Floodlight Out Of Scrap

When the apocalypse comes, we want [Justin] on our team! He made a hefty 400 W work light out of four 100 W LEDs mounted to a giant, aluminum slab-like heat sink he had lying around. He manufactured a diffuser for the LEDs by cutting down what appeared to be a old broken fluorescent light fixture’s cover, with side plates bolted into place for good measure. [Justin] does a lot of metalwork in his projects, and you can see it the precision with which he bolts the various parts together into a rather slick assembly.

The LEDs run off 110 V, and [Justin] soldered one of those white iPhone USB chargers in to power four small fans that are mounted on the heat sink fins backing up the LEDs. Then he mounted a ball joint onto the underside so the thing could be pointed wherever, with the other end of the joint attached to what might be the tripod from a standing work light.

Now all he needs is a control system, like this arcade button workshop light or this fully controllable workshop lighting rig.

Continue reading “Building A Monster Floodlight Out Of Scrap”

Neural Network Really Ties The Room Together

If there’s one thing that Hollywood knows about hackers, it’s that they absolutely love data visualizations. Sometimes it’s projected on a big wall (Hackers, WarGames), other times it’s gibberish until the plot says otherwise (Sneakers, The Matrix). But no matter what, it has to look cool. No hacker worth his or her salt can possibly work unless they’ve got an evolving Venn diagram or spectral waterfall running somewhere in the background.

Inspired by Hollywood portrayals, specifically one featured in Avengers: Age of Ultron, [Zack Akil] decided it was time to secure his place in the pantheon of hacker wall visualizations. But not content to just show meaningless nonsense on his wall, he set out to create something that was at least showing actual data.

[Zack] created a neural network to work through multi-label classification data in Python using the scikit-learn machine learning suite. The code takes the values from the neutral network training algorithm and converts them to RGB colors by way of an Arduino. Each “node” in the neutral network is 3D printed in translucent filament, and fitted with an RGB LED module. These modules are then connected to each other via side-glow fiber optic tubes, so that the colors within the tubes are mixed depending on the colors of the nodes they are attached to. This allows for a very organic “growing” effect, as colors move through the network node-by-node.

In the end this particular visualization doesn’t really mean anything; the data it’s working on only exists for the purposes of the visualization itself. But [Zack] succeeded in creating a practical visualization of machine learning, and if you’re the kind of person who needs to keep tabs on learning algorithms, some variation of this design may be just what you’re looking for.

If AI isn’t your thing but you still want a wall of RGB LEDs, maybe you can use this phased array antenna visualizer instead. If you’re really hip, maybe you’ll go the analog route and put a big gauge on the wall.

Continue reading “Neural Network Really Ties The Room Together”

FoTW: LED Strips Make Awful Servo Drivers

We must all have at some time or another spotted a hack that seems like an incredible idea and which just has to be tried, but turns out to have been stretching the bounds of what is possible just a little too far. A chunk of our time has disappeared without trace, and we sheepishly end up buying the proper part for the job in hand.

[Orionrobots] had a conversation with a YouTube follower about LED strips. An LED strip contains a length of ready-made PWM drivers, they mused. Wouldn’t it be great then, if each of the drivers on a strip could be connected to a servo, making the strip a ready-made single-stop SPI servo driver. With a large multi-servo robot to build, he set to work on a strip of WS2801s.

If you are in the Soldering Zone and have elite skills at the iron, then soldering a wire to a surface mount driver chip is something entirely possible. For mere mortals though it’s a bit of a challenge, and he notes just how much extra time it’s added to the project. The fun starts though when the servo is hooked up, the best that can be said is that it vibrates a bit. On paper, the LED drivers should be able to drive a servo, because they can create the correct waveform. But in practice the servo is designed to accept a logic level input while the driver is designed to sit in series with an LED and control its current. In practice therefore the voltages required for a logic transition can’t quite be achieved.

He concludes by recommending that viewers splash out on a servo driver board rather than trying an LED strip. We applaud him for the effort, after all it’s a hack any of us might have thought of trying for ourselves.

Continue reading “FoTW: LED Strips Make Awful Servo Drivers”

Echo Dot Finds Swanky New Home In Art Deco Speaker

The phrase “They don’t make them like they used to” is perhaps best exemplified by two types of products: cars and consumer electronics. Sure, the vehicles and gadgets we have now are so advanced that they may as well be classified as science-fiction when compared to their predecessors, but what about that style. Our modern hardware can rarely hold a candle to the kind of gear you used to be able to buy out of the “Sears, Roebuck and Company” catalog.

So when [Democracity] came into possession of a wickedly retro art deco speaker, it’s no surprise he saw it as a perfect opportunity to bring some of that old school style into the 21st century by rebuilding it with an Amazon Echo Dot at its core. The fact that the original device was a speaker and not a full radio made the conversion much easier, and will have everyone trolling yard sales for months trying to find a donor speaker to build their own.

To start the process, [Democracity] popped the panels off and ripped out what was left of the speaker’s paper cone and coil. In a stroke of luck, the opening where the driver used to go was nearly the perfect size to nestle in the Echo Dot. With a 3D printed cradle he found on Thingiverse and a liberal application of epoxy, the Dot could get snapped into the speaker like it was always meant to be there.

[Democracity] then picked up some absolutely gorgeous speaker cloth on eBay and hot glued it to the inside of the panels. What was presumably the volume knob was pulled out of the bottom and turned out to be a perfect place to run the Dot’s USB cable out of.

A lesser man would have called this project completed, but [Democracity] knows that no hack is truly complete without the addition of multicolored blinking LEDs. With the RGB LED strips installed inside, the light is diffused through the cloth panels and creates a pleasing subtle effect. You can almost imagine a couple of vacuum tubes glowing away inside there. Judging by the final product, it’s no surprise [Democracity] has a fair bit of experience dragging audio equipment kicking and screaming into the modern era.

This isn’t the first time we’ve seen an old piece of audio equipment get a high-tech transfusion, and isn’t even the first time we’ve seen the Dot used to do it. But it’s certainly the one we’d most like to see sitting on our shelf.

Custom Lightbulb Firmware

The Internet of Things is developing at a rapid pace, as hobbyists and companies rush to develop the latest and greatest home automation gear. One area of particular interest to some is lighting – yes, even the humble lightbulb now comes with a brain and is ripe for the hacking.

[Tinkerman] starts by doing a full disassembly of the Sonoff B1 lightbulb. It’s a popular device, and available for less than $20 on eBay. Rated at 6 watts, the bulb has a heatsink that is seemingly far larger than necessary. Inside is the usual AC/DC converter, LED driver and an ESP8285 running the show. While this is a slightly different part to the usual ESP8266, it can be programmed in the same way by selecting the correct programming mode.

This is where it gets interesting – [Tinkerman] flashes the device with a custom firmware known as ESPurna. This firmware enables greater control over the function of the bulb, from colour choice, to speaking to the bulb over MQTT.

[Tinkerman] does a great job of walking through the exact steps needed to disassemble and reprogram the bulb, and touches upon the added flexibility given by the custom firmware. We love to see projects like this one, that give greater control over IoT devices and enable users to better integrate them with other systems.

LED Princess Dress Also Lights Up Girl’s Face

We’re pretty sure that [Luke] took Uncle of the Year last Halloween when he made an RGB LED princess dress for his niece. He recently found the time to document the build with a comprehensive how-to that’s just in time for Halloween ’17.

[Luke] made the system modular so that his niece could use it with any dress. The RGB LED strips are actually fastened down the inside of a petticoat — a fluffy, puffy kind of slip that’s worn underneath the dress. The LEDs face in toward the body, which helps diffuse the light. [Luke] first attached the strips with their own adhesive and then spent a lot of time sewing them down so they stayed put. At some point, he found that hot glue worked just as well.

The coolest part of this project (aside from the blinkenlights of course) is the power source. [Luke] used what he already had lying around: an 18V Ryobi battery pack. He wired a step-converter to it using a printed cap from Shapeways that’s designed to connect metal clips to the battery contacts. This cap really makes these packs useful for a lot of projects that need long-lasting portability.

These batteries are rated for 240W, which is overkill considering the load. But there’s a reason: it keeps heat to a minimum, since the electronics are hidden inside a cute little backpack. Speaking of cute, you can see his niece model the dress after the break.

Continue reading “LED Princess Dress Also Lights Up Girl’s Face”

Test your speed

Modern Strongman Games Test Your Speed Instead

Step right up! What would a Makerfaire be without some carnival games? And being a Makerfaire, they could of course be modernized versions. In [avishorp]’s case, he made a series of games that test your speed and look very much like the old strongman game, aka high striker or strength tester.

In the strongman game, you smash a lever with all your might using a hammer. A puck on the other end of the lever then shoots up a tower, hopefully high enough to hit a bell, winning you a prize. In [avishorp]’s games the puck, tower and bell are all replaced with an LED strip. In the swipe game, the faster you swipe your hand sideways over two optical proximity sensors, the higher the LEDs light up. In the drum game, the speed with which you drum on a rubber disk with embedded accelerometer, the higher the LEDs light up. The chase and response games both involve buttons that you have to rapidly hit, to similar effect.

For the brains, each game is controlled by an Adafruit Trinket board. [Avishorp] chose to use the PlatformIO IDE instead of the Arduino IDE to write them, preferring its modern editor, but he didn’t like that it doesn’t print and that it doesn’t tell you the final file size. The latter issue caused him to overwrite the bootloader, something that he understandably considered a major inconvenience.

Check out his page for more details, Fritzing diagrams, links to code, and all game videos. Meanwhile we’ve included clips of the drum and swipe games below.

And if it’s more carnival games you’re looking for, how about this adult-sized Sit ‘n Spin made using a rear differential and axle assembly out of an old car or truck. Or maybe you prefer something less likely to make you woozy, in which case you can try fishing with the Bass Master 3000.

Continue reading “Modern Strongman Games Test Your Speed Instead”