One-String, One-Trick Pony Plays “the Lick”

Wouldn’t you love to be able to play a song on a stringed instrument even though you don’t have an iota of musical talent? That’s the idea behind Strumli, a single-string instrument built by [Factorem] that plays “the lick”. You know, the lick. Chances are, you’ve heard it somewhere before.

Essentially, it’s a pill-shaped bowl with a soundboard. A high-E guitar string is wound around bearings and tuned with a guitar tuner. The lengths of string between the bearings correspond to each note in the lick. Strum it in the right direction, and Bob’s your uncle.

So how the heck did [Factorem] come up with the proper string lengths needed to play the song? After a bit of fancy math involving the equation that represents the relationship between the measurable frequency of a vibrating string under tension and the tension itself, [Factorem] had the overall length of the string. Then it was a matter of finding the frequencies needed to play the lick, along with their corresponding lengths.

Since the string exerts about 80 pounds of tension across the 3D-printed soundboard, some serious internal bracing is required, which [Factorem] figured out in CAD program. All the files are available if you want to build your own. Be sure to check out the build/demo after the break.

Would you rather just build a little harp? Here’s the inspiration for Strumli — a single-string number with a full octave.

Continue reading “One-String, One-Trick Pony Plays “the Lick””

Cyanodore 6 Is A Rad Commodore 64 Synthesizer

The Commodore 64 is celebrated to this day for its capable SID sound chip, which provided the soundtrack for some of the best video games of its era. Even today, it’s still in demand as a chiptune synth. [gavinlyons] decided to take a breadbox-style C64 and mod it to be a more dedicated synth platform, creating what he calls the Cyanodore 6.

The build starts by equipping the C64 with MIDI via a C-LAB interface cartridge. Software is loaded on to the C64 via a readily-available SD2ISEC converter, which lets the retro computer run off SD cards. The original SID was removed and replaced with an ARMSID emulator instead, giving the rig stereo output with some custom wiring. Four potentiometers were also added to control various synth parameters by wiring them into the C64’s two joystick ports. There are a variety of synth programs that can run on the C64, with [gavinlyons] noting CynthCart, STATION64, and MicroRhythm as popular choices. Other nifty mods include the keyboard illumination, tube preamp, and integrated 7″ LCD screen.

If you’re looking to start using your C64 as a performance instrument, this build is an excellent starting point. We’ve seen other neat builds in this area before, too. It’s got just about everything you’ll need on stage. Video after the break.

Continue reading “Cyanodore 6 Is A Rad Commodore 64 Synthesizer”

The Reverse Oscilloscope

Usually, an oscilloscope lets you visualize what a signal looks like. [Mitxela]’s reverse oscilloscope lets you set what you want an audio waveform to look like, and it will produce it. You can see the box in the video below.

According to [Mitxela] part of the difficulty in building something like this is making the controls manageable for mere mortals. We really like the slider approach, which seems pretty obvious, but some other controls are a bit more subtle. For example, the interpolation control can create a squarish wave or a smooth waveform, or anything in between.

This is sort of an artistic take on an arbitrary waveform generator but with a discrete-panel user interface. The device contains a Teensy, a Raspberry PI Pico, a 16-bit ADC, and an external DAC. The Pico is little more than an I/O controller, reading the user interface and transmitting it on a serial port.

The outside construction looks excellent (we assume the tape is temporary). The inside is a bit messier, but still nicely done. There are many photos of the construction and details of problems along the way with 12-bit ADCs and power supply experiments.

Of course, if you don’t need the user interface, you can go crazy with waveform generation. We did our own similar project, but you could draw your waveforms on the PC instead of sliders.

Continue reading “The Reverse Oscilloscope”

A rotary subwoofer made out of a speaker coil, a medium-size fan an a grey wooden box to stand on.

Tear Apart Your House For $200 With This Rotary Subwoofer

Many movies and songs use a lot of of bass to make it feel more real to the viewer or listener. Because of this, subwoofers are common in high-quality audio setups, often costing a substantial part of the budget. [Daniel Fajkis] takes the subwoofer to it’s logical extreme by building a rotary subwoofer on a $200 budget.

The principle of a rotary subwoofer is that a normal subwoofer physically moves the air, and so does a fan. If you could make a fan oscillate the air instead of only pushing it, you could turn it into such a subwoofer, which is exactly what [Daniel] did. [Daniel] mounts a large electric motor on the case of an ex-subwoofer to spin the fan. Then, he uses the rotor linkage of a model helicopter and a modified subwoofer speaker to pitch the fan blades, spinning around to create a truly impressive gust of air oscillating at as low as 1 Hz.

The video, after the break, is well made with some good humor, including the legendary quote: “It’s gonna tear apart my household, there’s no way we’re surviving this one.”
Continue reading “Tear Apart Your House For $200 With This Rotary Subwoofer”

Where Did Electronic Music Start?

A culture in which it’s fair to say the community which Hackaday serves is steeped in, is electronic music. Within these pages you’ll find plenty of synthesisers, chiptune players, and other projects devoted to synthetic sound. Not everyone here is a musician of obsessive listener, but if Hackaday had a soundtrack album we’re guessing it would be electronic. Along the way, many of us have picked up an appreciation for the history of electronic music, whether it’s EDM from the 1990s, 8-bit SID chiptunes, or further back to figures such as Wendy Carlos, Gershon Kingsley, or Delia Derbyshire. But for all that, the origin of electronic music is frustratingly difficult to pin down. Is it characterised by the instruments alone, or does it have something more specific in the music itself? Here follows the result of a few months’ idle self-enlightenment as we try to get tot he bottom of it all.

Will The Real Electronic Music Please Stand Up?

Page from the Telharmonium patent, showing the tone wheels
If you own a synthesiser, the Telharmonium is its daddy.

Anyone reading around the subject soon discovers that there are several different facets to synthesised music which are collectively brought together under the same banner and which at times are all claimed individually to be the purest form of the art. Further to that it rapidly becomes obvious when studying the origins of the technology, that purely electronic and electromechanical music are also two sides of the same coin. Is music electronic when it uses an electronic instrument, when electronics are used to modify the sound of an acoustic instrument, when it is sequenced electronically often in a manner unplayable by a human, or when it uses sampled sounds? Is an electric guitar making electronic music when played through an effects pedal?

The history of electronic music as far as it seems from here, starts around the turn of the twentieth century, and though the work of many different engineers and musicians could be cited at its source there are three inventions which stand out. Thaddeus Cahill’s tone-wheel-based Telharmonium US patent was granted in 1897, the same year as that for Edwin S. Votey’s Pianola player piano, while the Russian Lev Termen’s Theremin was invented in 1919. In those three inventions we find the progenital ancestors of all synthesisers, sequencers, and purely electronic instruments. If it appears we’ve made a glaring omission by not mentioning inventions such as the phonograph, it’s because they were invented not to make music but to record it. Continue reading “Where Did Electronic Music Start?”

Spooky Noise Box Has Post-Halloween Potential

There’s more than one way to scare people on Halloween. Sure, there’s always the low-brow jump scare, but that will generally just annoy the person and possibly cause a heart attack. No, what you need is a sustained soundscape of hellish audio. And where does one find hellish audio? Well, you make your own with a spooky-sounds noise box.

And no, we’re not talking about a soundboard that goes ‘boo’ and ‘ooo-OOO-oooh’ and whatnot. This is a full-on DIY instrument that has potential beyond Halloween. Essentially, the wooden box takes input vibrations from various doodads, and these vibrations are picked up by a piezo disk or two glued to the underside of the lid. The piezos are wired up to a 3.5 mm jack, which runs out to the PC and [SvartalfarQc]’s favorite Digital Audio Workstation (DAW). From there, it’s just a matter of playing around with the sounds — looping them, running them through various instrument voices, adding effects, and so on.

We love the the things that [SvartalfarQc] came up with, including a wind-up walking heart thing, a retractable badge holder, and that noise box mainstay, a sproingy doorstop.

We all know piezos are awesome, but have you ever considered that they can be used to digitize old wax cylinder recordings?

Re-Creating Pink Floyd In The Name Of Speech

For people who have lost the ability to speak, the future may include brain implants that bring that ability back. But could these brain implants also allow them to sing? Researchers believe that, all in all, it’s just another brick in the wall.

In a new study published in PLOS Biology, twenty-nine people who were already being monitored for epileptic seizures participated via a postage stamp-sized array of electrodes implanted directly on the surface of their brains. As the participants were exposed to Pink Floyd’s Another Brick In the Wall, Part 1, the researchers gathered data from several areas of the brain, each attuned to a different musical element such as harmony, rhythm, and so on. Then the researchers used machine learning to reconstruct the audio heard by the participants using their brainwaves.

First, an AI model looked at the data generated from the brains’ responses to components of the song, like the changes in rhythm, pitch, and tone. Then a second model rejiggered the piecemeal song and estimated the sounds heard by the patients. Of the seven audio samples published in the study results, we think #3 sounds the most like the song. It’s kind of creepy but ultimately very cool. What do you think?

Continue reading “Re-Creating Pink Floyd In The Name Of Speech”