AI Patent Trolls Now On The Job For Drug Companies

Love it or loathe it, the pharmaceutical industry is really good at protecting its intellectual property. Drug companies pour billions into discovering new drugs and bringing them to market, and they do whatever it takes to make sure they have exclusive positions to profit from their innovations for as long a possible. Patent applications are meticulously crafted to keep the competition at bay for as long as possible, which is why it often takes ages for cheaper generic versions of blockbuster medications to hit the market, to the chagrin of patients, insurers, and policymakers alike.

Drug companies now appear poised to benefit from the artificial intelligence revolution to solidify their patent positions even further. New computational methods are being employed to not only plan the synthesis of new drugs, but to also find alternative pathways to the same end product that might present a patent loophole. AI just might change the face of drug development in the near future, and not necessarily for the better.

Continue reading “AI Patent Trolls Now On The Job For Drug Companies”

What Happens When A Regular Person Finds A Huge Security Flaw?

The biggest news in the infosec world, besides the fact that balaclavas are becoming increasingly popular due to record-low temperatures across the United States, is that leet haxors can listen to you from your iPhone using FaceTime without you even answering the call. There are obvious security implications of this bug: phones should only turn on the microphone after you pick up a call. This effectively turns any iPhone running iOS 12.1 or later into a party line. In response Apple has taken group FaceTime offline in preparation of a software update later this week.

So, how does this FaceTime bug work? It’s actually surprisingly simple. First, start a FaceTime call with an iPhone contact. While the call is dialing, swipe up, and tap Add Person. Add your own phone number in the Add Person screen. This creates a group call with two instances of your iPhone, and the person you’re calling. You may now listen in to the audio of the person you originally called even though they haven’t chosen to pick up the call. Dumb? Yes. Insecure? Horribly. If your iPhone is ringing, the person on the other end could be listening in.

But this isn’t a story about how Apple failed yet again. This is a story about how this security flaw was found, and what a normal person can do if they ever find something like this.

Continue reading “What Happens When A Regular Person Finds A Huge Security Flaw?”

Solar Power Is Set To Get More Expensive

The sun constantly bathes half the planet with energy. The energy may be free, but the methods for converting it to electricity cost money. Last year, the Chinese government cut subsidies to their solar panel manufacturers to shrink the industry which was perceived as bloated. This forced Chinese solar panel makers to cut prices to clear inventory. This drove down prices about 30%, making solar power cheaper than ever.

Reuters is reporting that Eric Luo, president of one of the largest solar panel makers in China, predicts that “the party is definitely over.” Speaking at the World Economic Forum, Luo said that prices have quit dropping and he expected industry consolidation to cause prices to rise by as much as 15% over the next two years.

Continue reading “Solar Power Is Set To Get More Expensive”

The Cyborgs Among Us: Exoskeletons Go Mainstream

Every technological advancement seems to have a sharp inflection point, a time before which it seems like any early adopters are considered kooks, but beyond which the device or service quickly becomes so mainstream that non-adopters become the kooky ones. Take cell phones, for example – I clearly remember a news report back in the 1990s about some manufacturers crazy idea to put a digital camera in a phone. Seemingly minutes later, you couldn’t buy a phone without a camera.

It seems like we may be nearing a similar inflection point with a technology far more complex and potentially far more life-altering than cameras in cell phones: powered exoskeletons. With increasing numbers of news stories covering advancements in exoskeletal assistants for the elderly, therapeutic applications for those suffering from spinal cord injuries and neurodegenerative diseases, and penetration into the workplace – including the battlefield – as amplifiers of human effort, it’s worth taking a look at where we are with exoskeletons before seeing someone using one in public becomes so commonplace as to go unnoticed.

Continue reading “The Cyborgs Among Us: Exoskeletons Go Mainstream”

Raspberry Pi’s Latest Upgrade: The Compute Module 3+

We’ve become so used to the Raspberry Pi line of boards that have appeared in ever-increasing power capabilities since that leap-year morning in 2012 when the inexpensive and now ubiquitous single board computer was announced and oversold its initial production run. The consumer boards have amply fulfilled their mission in providing kids with a pocket-money computer, and even though they are not the most powerful in the class of small Linux boards they remain the one to beat.

The other side of the Pi coin comes with the industrial siblings of the familiar boards, the Compute Module. This is a version of the Pi meant to be built into other products, utilizing a SODIMM connector as the hardware interface. Today brings news of a fresh addition to that range: the Compute Module 3+.

As you might expect from the nomenclature this brings the Broadcom BCM2837B0 processor from the Raspberry Pi 3B+ to the barebones SODIMM-style Pi, but unexpectedly they have also made it available with a range of different size eMMC devices installed. In place of the 4 GB capacity of previous offerings are 8, 16, and 32 GB devices, with an intriguing new “lite” variant that has no onboard storage at all.

Perhaps the saddest thing from a Hackaday reader’s perspective is that as the Pi blog post notes due to commercial sensitivities they have little idea what products many of the Compute Modules they sell end up in — a mystery we’d really like to solve. No doubt there are some fascinating applications just waiting do be discovered by hardware hackers in a decade’s time as units enter the surplus market, but for now we’ll have to be content with community offerings. This stereoscopic camera is a recent one, or perhaps one of several handheld game consoles.

Drone Sightings, A New British Comedy Soap Opera

There’s a new soap opera that I can’t stop watching. Actually, I wish I could change the channel but this is unfortunately happening in real life. It’s likely the ups and downs of drone sightings would be too far fetched for fiction anyway.

If you aren’t British, maybe you will know a little of our culture through the medium of television. We don’t all live in stately homes like Downton Abbey of course, instead we’re closer to the sometimes comedic sets, bad lighting, and ridiculously complicated lives of the residents of Coronation Street or of Albert Square in Eastenders that you may have flashed past late at night on a high-number channel.

Our new comedy soap lacks the regional accents of Emmerdale or Hollyoaks, but has no less of the farce about it. Here at Hackaday we’ve brought you news of the UK’s peculiar habit of bad reporting and shoddy investigation of questionable drone sightings several times over the last year or two. Most recently we covered a series of events before Christmas that closed Gatwick, London’s second airport for several days over what turned out to be nothing of substance.

Unfortunately it didn’t end there. We’re back once more to catch up with the latest events down on the tarmac, and come away with a fresh set of reasonable questions unanswered by the popular coverage of the matter.

Continue reading “Drone Sightings, A New British Comedy Soap Opera”

Tiny Voltmeter Uses DNA

We use a lot of voltmeters and we bet you do too. We have some big bench meters and some panel meters and even some tiny pocket-sized meters. But biological researchers at the University of Chicago and Northwestern University have even smaller ones. They’ve worked out a way to use a DNA-based fluorescent reporter to indicate the voltage across cellular membranes.

We don’t know much about biology, but apparently measuring the voltage on the membrane around a cell is easy, but measuring the voltages across membranes inside the cell isn’t. Previous work disrupted cells and measured potentials on isolated organelles.

The indicator — called Voltair — can target specific parts of a cell and includes a reference indicator so that a ratiometric measurement is possible. In fact, there are three main parts to the 38-base pair DNA duplex. One module contains a voltage-sensing dye that fluoresces in a way that indicates voltage. The second module is a reference dye that allows researchers to judge the voltage level. The final module identifies where the probe should attach.

Continue reading “Tiny Voltmeter Uses DNA”