Hacking Headaches: Keeping A Neurostimulator Working

We’ve heard a ton of stories over the years about abandoned technology — useful widgets, often cloud-based, that attracted an early and enthusiastic following, only to have the company behind the tech go bankrupt or decide to end operations for business reasons, which effectively bricks hundreds or perhaps millions of otherwise still-usable devices. Now imagine that happening to your brain.

[Markus Möllmann-Bohle] doesn’t have to imagine it, because he’s living it. [Markus] suffers from chronic cluster headaches, an often debilitating condition that leaves a person with intractable pain. Having lived with these headaches since 1987, and treating them with medications with varying degrees of success, [Markus] was finally delivered from his personal hell by a sphenopalatine ganglion (SPG) neuromodulator. The device consists of an unpowered stimulator implanted under the cheekbone that’s wired into the SPG, a bundle of nerves that supply the sinuses, nasal mucosa, tear glands, and many other structures in the face.

To reverse a cluster headache, [Markus] applies an external transmitter to the side of his face, which powers the implant and directs it to stimulate the SPG with low-frequency impulses, which interferes with a reflex loop that causes the symptoms associated with a cluster headache. [Markus] has been using the implant for years, but now its manufacturer has rolled up operations, leaving him with a transmitter in need of maintenance and the possibility of facing his debilitating headaches once again.

The video below shows [Markus]’s workaround, which essentially amounts to opening up the device and swapping in a new LiPo battery pack. [Markus], an electrical engineer by training, admits it’s not exactly a major hack, but it’s keeping him going for now. But he’s clearly worried because eventually, something will happen to that transmitter that’s beyond his skills to repair.

There’s cause for hope, though, as the intellectual property of the original implant company has been purchased by an outfit called Realeve, with the intention to continue support. That would be a lifesaver for [Markus] and everyone relying on this technology to live a normal life, so here’s hoping there’s no need for future hacking heroics. But as the video below details, there is a lot of neurotechnology out there, and the potential for having that bricked by a corporate decision has to be terrifying to the people who depend on them. Continue reading “Hacking Headaches: Keeping A Neurostimulator Working”

Do Not Attempt Disassembly: Analog Wizardry In A 1960s Counter

[CuriousMarc] is back with more vintage HP hardware repair. This time it’s the HP 5245L, a digital nixie-display frequency counter from 1963. This unit is old enough to be entirely made of discrete components, but has a real trick up its sleeve, with add-on components pushing the frequency range all the way up to 18 GHz. But this poor machine was in rough shape. There were previous repair attempts, some of which had to be re-fixed with proper components. When it hit [Marc]’s shop, the oscillator was working, as well as the frequency divider, but the device wasn’t counting, and the reference frequencies weren’t testing good at the front of the machine. There were some of the usual suspects, like blown transistors. But things got really interesting when one of the boards had a couple of tarnished transistors, and a handful of nice shiny new ones — but maybe not all the right transistors. Continue reading “Do Not Attempt Disassembly: Analog Wizardry In A 1960s Counter”

Plastic Welding Revisited

Last time we talked about a video that purported to do plastic welding, we mentioned that the process wasn’t really plastic welding as we understood it. Judging by the comments, many people agreed, but it was still an interesting technique. Now [Inventor 101] has a video about plastic repair that also talks about welding, although — again, we aren’t sure all of the techniques qualify.

That’s not to say there aren’t some clever ideas, though. There are several variations on a theme, but the basic idea is to use a bolt or something similar in a soldering iron, metal reinforcement from things like wires and staples, and donor plastic from a zip tie. While we don’t think the nylon in a typical zip tie is the best way to repair anything other than nylon, if you were repairing something 3D printed, you could easily swap out the tie for filament of the same material, which — we think — would bond better.

Continue reading “Plastic Welding Revisited”

Protect Vintage Gear With Easy Capacitor Reforming

Having acquired some piece of old electronic equipment, be it a computer, radio, or some test gear, the temptation is there to plug it in as soon as you’ve lugged it into the ‘shop. Don’t be so hasty. Those power supplies and analog circuits often have a number of old aluminium electrolytic capacitors of unknown condition, and bad things can happen if they suddenly get powered back up again. After a visual inspection, to remove and replace any with obvious signs of leakage and corrosion, those remaining may still not be up to their job, with the oxide layers damaged over time when sat idle, they can exhibit lower than spec capacitance, voltage rating or even be a dead short circuit. [TechTangents] presents for us a guide to detecting and reforming these suspect capacitors to hopefully bring them, safely, back to service once more.

Capacitor failure modes are plentiful

When manufactured, the capacitors are slowly brought up to operating voltage, before final encapsulation, which allows the thin oxide layer to form on the anode contact plate, this is an electrically driven chemical process whereby a portion of the electrolyte is decomposed to provide the needed oxygen ions. When operating normally, with a DC bias applied to the plates, this oxidation process — referred to as ‘self-healing’ — continues slowly, maintaining the integrity of the oxide film, and slowly consuming the electrolyte, which will eventually run dry and be unable to sustain the insulating oxide layer.

If left to sit un-powered for too long, the anodic oxide layer will decay, resulting in reduced operating voltage. When powered up, the reforming process will restart, but this will be in an uncontrolled environment, resulting in a lot of excess heat and gases being vented. It all depends on how thin the oxide layer got and if holes have started to form. That is, if there is any electrolyte left to react – it may already be far too late to rescue.

If the oxide layer is sufficiently depleted, the capacitor will start to conduct, with a resultant self-heating and runaway thermal decomposition. They can explode violently, which is why there are score marks at the top of the can to act as a weak point, where the contents can burst through. A bit like that ‘egg’ scene in Aliens!

Yucky leaky capacitor. Replace these! and clean-up that conductive goo too.

The ‘safe’ way to reform old capacitors is to physically remove them from the equipment, and apply a low, controlled voltage below the rated value to keep the bias current at a low value, perhaps just 2 mA. Slowly, the voltage can be increased to push the current back up to the initial forming level, so long as the current doesn’t go too high, and the temperature is within sensible bounds. The process ends when the applied voltage is at the rated value and the current has dropped off to low leakage values.

A word of warning though, as the ESR of the reformed caps could be a little higher than design, which will result in higher operating temperature and potentially increased ripple current in power supply applications.

We’re really glossing over this subject fast here, but [TechTangents] was kind enough to link to some fine capacitor-related reading for those who need a primer. Here is a US DoD handbook for reforming capacitors with advice on storage shelf life, some tech notes on using electrolytic capactors from chemi-con, and a general capacitor guide from TDK. Reforming caps is nothing new, here’s an previous article about repairs, and something a bit more recent.

Continue reading “Protect Vintage Gear With Easy Capacitor Reforming”

Inside A Current Probe

[The Signal Path] had two Tektronix AC/DC current probes that didn’t work. Of course, that’s a great excuse to tear them open and try to get at least one working. You can see how it went in the video below. The symptoms differed between the two units, and along the way, the theory behind these probes needs some exploration.

The basic idea is simple, but, of course, the devil is in the details. A simple transformer doesn’t work well at high frequencies and won’t work at all at DC. The solution is to use a hall effect sensor to measure DC and also to feed it back to cancel coil saturation.

Continue reading “Inside A Current Probe”

A Look Inside A Vintage Aircraft Altimeter

There’s a strange synchronicity in the projects we see here at Hackaday, where different people come up with strikingly similar stuff at nearly the same time. We’re not sure why this is, but it’s easily observable, with this vintage altimeter teardown and repair by our good friend [CuriousMarc] as the latest example.

The altimeter that [Marc] dissects in the video below was made by Kollsman, which is what prompted us to recall this recent project that turned a jet engine tachometer into a CPU utilization gauge. That instrument was also manufactured by Kollsman, but was electrically driven. [Marc]’s project required an all-mechanical altimeter, so he ordered a couple from eBay.

Unfortunately, thanks to rough handling in transit they arrived in less than working condition, necessitating the look inside. For which we’re thankful, of course, because the guts of these aneroid altimeters are quite impressive. The mechanism is all mechanical, with parts that look like something [Click Spring] would make for a fine timepiece. [Marc]’s inspection revealed the problem: a broken pivot screw keeping the expansion and contraction of the aneroid diaphragms from transmitting force to the gear train that moves the needles. The repair was a little improvisational, with 0.5-mm steel balls used to stand in for the borked piece. It may not be flight ready, but it worked well enough to get the instrument back in action.

We suspect that [Marc] won’t be able to leave well enough alone on this one, so we’ll be on the lookout for a proper repair. In the meantime, he’ll be able to use this altimeter in the test setup he’s building to test a Bendix air data computer from a 1950s-era jet fighter. Continue reading “A Look Inside A Vintage Aircraft Altimeter”

Recreating A Non-Standard USB Cable

USB is a well-defined standard for which there are a reasonable array of connectors for product designers to use in whatever their application is. Which of course means that so many manufacturers have resorted to using proprietary connectors, probably to ensure that replacements are suitably overpriced. [Teaching Tech] had this problem with a fancy in-car video device, but rather than admit defeat with a missing cable, he decided to create his own replacement from scratch.

The plug in use was a multi-way round design probably chosen to match the harshness of the automotive environment. The first solution was to hook up a USB cable to a set of loose pins, but after a search to find the perfect-fitting set of pins a 3D printed housing was designed to replace the shell of the original. There’s an ouch moment in the video below the break as he receives a hot glue burn while assembling the final cable, but the result is a working and easy to use cable that allows access to all the device functions. Something to remember, next time you have a proprietary cable that’s gone missing.

Continue reading “Recreating A Non-Standard USB Cable”