Jetson Nano Robot

[Stevej52] likes to build things you can’t buy, and this Jetson Nano robot falls well within that category. Reading the project details, you might think [Stevej52] drinks too much coffee. But we think he is just excited to have successfully pulled off the Herculean task of integrating over a dozen hardware and software modules. Very briefly, he is running Ubuntu and ROS on the PC and Nano. It is all tied together with Python code, and is using Modbus over IP to solve a problem getting joystick data to the Nano. We like it when existing, standard protocols can be used because it frees the designer to focus more on the application. Modbus has been around for 40 years, has widespread support in many languages and platforms.

This is an ongoing project, and we look forward to seeing more updates and especially more video of it in action like the one found below. With the recent release of a price-reduced Jetson Nano, which we covered last week, this might be an excellent project to take on.

Continue reading “Jetson Nano Robot”

Robot Gets Around On All Fours, Thanks To Many, Many Servos

As far as robots are concerned, wheels and tracks are great ways to get around when you’ve got serious work to do. However, if you want to build something that feels more animal than machine, building a walking ‘bot is the way to go. [Technovation] delivers a great example in the form of this quadruped design.

It’s a build executed in the modern style, taking full advantage of contemporary design tools and processes. The entire robot is built around twelve servo motors that provide rotation and translation to the robot’s joints. After importing the servo models into Fusion 360, [Technovation] set about building the rest of the body around them. An Arduino Uno runs the show, which addresses the many servos thanks to a Sensor Shield that has a multitude of useful outputs.

[Technovation] put a specific focus on durability and robustness during the design phase. The platform is intended as a test bed for various walking styles and gaits, and thus any hardware failures would be an unnecessary distraction from the project’s goals. The chassis is a great platform to learn on, and we expect to see further developments in future.

The eerily lifelike robots from Boston Dynamics may have set a high bar, but DIYers are still out there having a crack at building capable walking robots. Video after the break.

Continue reading “Robot Gets Around On All Fours, Thanks To Many, Many Servos”

Modular Rover Platform Rolls On 3D Printed Flexible Tank Tracks

Master of 3D printed robots, [James Bruton], plans to do some autonomous rover projects in the future, but first, he needed a modular rover platform. Everything is cooler with tank tracks, so he built a rover with flexible interlocking track sections.

The track sections are printed with flexible Ninjaflex filament. Each section has a tab designed to slot through two neighboring pieces. The ends of the tabs stick through on the inside of the track fit into slots on the drive wheel like gear teeth. This prevents the track from slipping under load. The Ninjaflex is almost too flexible, allowing the tracks to stretch and almost climb off the wheels, so [James] plans to experiment with some other materials in the future. The chassis consists of two 2020 T-slot extrusions, which allows convenient mounting of the wheel bogies and other components.

The interlocking track pieces

For initial driving tests [James] fitted two completely overpowered 1500 W brushless motors that he had on hand, which he plans to replace with smaller geared DC motors at a later stage.

A standard RC system is used for control, but it does not offer a simple way to control a skid steer vehicle. To solve this, [James] added an Arduino between the RC receiver and the motor ESC. It converts the PWM throttle and turn signal from the transmitter, and combines is into differential PWM outputs for the two ESCs.

Continue reading “Modular Rover Platform Rolls On 3D Printed Flexible Tank Tracks”

Educational Robot Teaches With Magnets And Servos

Teaching kids about robotics gives them valuable skills for their futures, and is generally pretty darn fun for all involved, too. However, teaching children often involves taking a bit of a different tack to educating college students, and more of a hand-holding approach is often needed. This robot project is an attempt to do just that, using some classic time-honored techniques and a unique method of propulsion.

The Magnetic Motion Robot, or MMR, is very much a DIY project. Built out of hand-cut plywood and assembled by lacing together individual modules, it’s a low-cost entry into the world of educational robotics. Rather than wheels or motors, it instead uses electromagnets mounted on servo arms to get around. Switching the magnets on and off, and moving the servos in time, allows the robot to pull itself along a ferromagnetic surface.

The robot is outfitted with buzzers and LEDs, and using these features creates further programming challenges for students. Naturally, there’s also a line-following program, which is a great way to begin educating kids about autonomous robot operations. It’s all run from an Arduino Nano, programmed with Makeblock’s special building-block programming software.

While its DIY nature makes assembly a little more involved than the average off-the-shelf kit, it does present its own learning opportunities such as soldering and the integration of hardware. Educational robots will continue to be popular and fun long into the future; we’re a particular fan of sumobots ourselves. Video after the break.

Continue reading “Educational Robot Teaches With Magnets And Servos”

Light Tracking Robot Relies On LDRs

These days, when doing any sort of optical tracking, our mind immediately leaps towards sophisticated solutions. Raspberry Pis, high end cameras, and machine learning toolchains all come to mind. Of course, if your goals are simpler, you needn’t complicate the issue. PHIL is a light tracking robot who is perfectly happy to do it the old-school way.

PHIL consists of an Arduino Uno running a twin-servo motion platform, providing the sensor head with pan and tilt functionality. The sensor head itself consists of a 3D-printed cruciform-section shroud that mounts four light-dependent resistors in individual sections. The shroud helps block light to the off-angle sensors, giving a stronger difference between those exposed to the light directly and those on the dark side. This makes for a stronger difference signal, so when the Arduino reads the sensors, it’s much clearer which way PHIL should point the sensor head to follow the light.

The builder, [Sean O’Donovan], notes that PHIL was built with no practical purpose in mind, and is simply a cool project. We certainly agree, and it’s important to note that skills picked up on a project like this will invariably come in handy down the track. Such techniques can be highly useful for tracking the sun, for example. Video after the break.

Continue reading “Light Tracking Robot Relies On LDRs”

3D Printed SCARA Arm With 3D Printer Components

One of the side effects of the rise of 3D printers has been the increased availability and low cost of 3D printer components, which are use fill for range of applications. [How To Mechatronics] capitalized on this and built a SCARA robot arm using 3D-printed parts and common 3D-printer components.

The basic SCARA mechanism is a two-link arm, similar to a human arm. The end of the second joint can move through the XY-plane by rotating at the base and elbow of the mechanism. [How To Mechatronics] added Z-motion by moving the base of the first arm on four vertical linear rods with a lead screw. A combination of thrust bearings and ball bearings allow for smooth rotation of each of the joints, which are belt-driven with NEMA17 stepper motors. Each joint has a microswitch at a certain position in its rotation to give it a home position. The jaws of the gripper slide on two parallel linear rods, and are actuated with a servo. For controlling the motors, an Arduino Uno and CNC stepper shield was used.

The arm is operated from a computer with a GUI written in Processing, which sends instructions to the Arduino over serial. The GUI allows for both direct forward kinematic control of the joints, and inverse kinematic control,  which will automatically move the gripper to a specified coordinate. The GUI can also save positions, and then string them together to do complete tasks autonomously.

The base joint is a bit wobbly due to the weight of the rest of the arm, but this could be fixed by using a frame to support it at the top as well. We really like the fact that commonly available components were used, and the link in the first paragraph has detailed instructions and source files for building your own. If the remaining backlash can be solved, it could be a decent light duty CNC platform, especially with the small footprint and large travel area. Continue reading “3D Printed SCARA Arm With 3D Printer Components”

Getting Started With Geometric Algebra For Robotics, Computer Vision And More

[Hugo Hadfield] wrote to let us know about an intriguing series of talks that took place in February of this year at GAME2020, on the many applications of geometric algebra. The video playlist of these talks can be found here along with the first video embedded after the break. For those of us who did not take advanced algebra during university, one can picture geometric algebra (GA) as an extension of vector algebra, adding more algebraic structures.

The essential difference is that GA adds a new vectors product, called the ‘geometric product’. The Cliff’s Notes version is that this is very useful for doing for example transformations, like in 3D spaces. For a quick algebraic introduction to GA for those familiar with vector algebra, the associated biVector website is helpful, from where one can also find additional information, software and other resources on getting started with GA.

These talks will take the viewer through the use of GA with robot kinematics (co-presented by [Hugo]), in astrophysics and AI. Definitely worth a watch, even algebra isn’t one’s strongest points.

Continue reading “Getting Started With Geometric Algebra For Robotics, Computer Vision And More”