“Emergency Law Enforcement Officer Hologram program activated. Please state the nature of your criminal or civil emergency.” Taking a cue from Star Trek: Voyager, the Seoul Metropolitan Police Agency is testing a holographic police officer, with surprisingly — dare we say, suspiciously? — positive results. The virtual officer makes an appearance every two minutes in the evening hours in a public park, presumably one with a history of criminal activity. The projection is accompanied by a stern warning that the area is being monitored with cameras, and that should anything untoward transpire, meat-based officers, presumably wearing something other than the dapper but impractical full-dress uniform the hologram sports, will be dispatched to deal with the issue.
Slider4826 Articles
Who Is Your Audience?
Here at Hackaday HQ, we all have opinions about the way we like to do things. And no surprise, this extends to the way we like to lay out circuits in schematics. So when we were discussing our own takes on this piece on suggested schematic standards, it was maybe more surprising how much we did agree on than how much we had different preferred styles. But of course, it was the points where we disagreed that provoked the most interesting discussion, and that’s when I had a revelation.
Besides torturing electronics, we all also write for you all, and one thing we always have in mind is who we’re writing for. The Hackaday audience, not to blow you up, is pretty knowledgeable and basically “full-stack” in terms of the hardware/software spectrum. This isn’t to say that everyone is a specialist in everything, though, and we also have certain archetypes in mind: the software type who is just starting out with hardware, the hardware type who isn’t as savvy about software, etc. So, back to schematic layout: Who is your audience? It matters.
For instance, do you organize the pinout for an IC by pin number or by pin function, grouping the power pins and the ADC pins and so on? If your audience is trying to figure out the circuit logic, you should probably go functional. But if you are trying to debug a circuit, you’re often looking at the circuit diagram to figure out what a given pin does, and the pin-number layout is more appropriate.
Do you lay out the logical flow of the circuit in the schematic, or do you try to mimic the PCB layout? Again, it could depend on how your audience will be using it. If they have access to your CAD tool, and can hop back and forth seamlessly from schematic to PCB, the logical flow layout is the win. However, if they are an audience of beginners, or stuck with a PDF of the schematic, or trying to debug a non-working board, perhaps the physical layout is the right approach.
Al Williams, who has experience with projects of a much larger scale than most of us self-taught hackers, doesn’t even think that a schematic makes sense. He thinks that it’s much easier to read and write the design in a hardware description language like VHDL. Of course, that’s certainly true for IC designs, and probably also for boards of a certain complexity. But this is only true when your audience is also familiar with the HDL in question. Otherwise, you’re writing in Finnish for an audience of Spaniards.
Before this conversation, I was thinking of schematic layout as Tom Nardi described it on the podcast – a step along the way to get to the fun parts of PCB layout and then to getting the boards in hand. But at least in our open-source hardware world, it’s also a piece of the documentation, and a document that has an audience of peers who it pays to keep in mind just as much as when I’m sitting down and writing this very newsletter. In some ways, it’s the same thing.
(And yeah, I know the featured image doesn’t exactly fit the topic, but I love it anyway.)
Finding A New Model For Hacker Camps

A couple of decades ago now, several things happened which gave life to our world and made it what it has become. Hackerspaces proliferated, giving what was previously dispersed a physical focus. Alongside that a range of hardware gave new expression to our projects; among them the Arduino, affordable 3D printing, and mail-order printed circuit boards.
The result was a flowering of creativity and of a community we’d never had before.Visiting another city could come with a while spent in their hackerspace, and from that new-found community blossomed a fresh wave of events. The older hacker camps expanded and morphed in character to become more exciting showcases for our expression, and new events sprang up alongside them. The 2010s provided me and my friends with some of the most formative experiences of our lives, and we’re guessing that among those of you reading this piece will be plenty who also found their people.
And then came COVID. Something that sticks in my mind when thinking about the COVID pandemic is a British news pundit from March 2020 saying that nothing would be quite the same as before once the pandemic was over. In our community this came home to me after 2022, when the first large European hacker camps made a return. They were awesome in their own way, but somehow sterile, it was as though something was missing. Since then we’ve had a few more summers spent trailing across the continent to hang out and drink Club-Mate in the sun, and while we commend the respective orgas for creating some great experiences, finding that spark can still be elusive. Hanging out with some of my friends round a European hackerspace barbecue before we headed home recently, we tried to put our finger on exactly where the problem lay.
Ask Hackaday: Where Are All The Fuel Cells?
Given all the incredible technology developed or improved during the Apollo program, it’s impossible to pick out just one piece of hardware that made humanity’s first crewed landing on another celestial body possible. But if you had to make a list of the top ten most important pieces of gear stacked on top of the Saturn V back in 1969, the fuel cell would have to place pretty high up there.

Smaller and lighter than batteries of the era, each of the three alkaline fuel cells (AFCs) used in the Apollo Service Module could produce up to 2,300 watts of power when fed liquid hydrogen and liquid oxygen, the latter of which the spacecraft needed to bring along anyway for its life support system. The best part was, as a byproduct of the reaction, the fuel cells produced drinkable water.
The AFC was about as perfectly suited to human spaceflight as you could get, so when NASA was designing the Space Shuttle a few years later, it’s no surprise that they decided to make them the vehicle’s primary electrical power source. While each Orbiter did have backup batteries for emergency purposes, the fuel cells were responsible for powering the vehicle from a few minutes before launch all the way to landing. There was no Plan B. If an issue came up with the fuel cells, the mission would be cut short and the crew would head back home — an event that actually did happen a few times during the Shuttle’s 30 year career.
This might seem like an incredible amount of faith for NASA to put into such a new technology, but in reality, fuel cells weren’t really all that new even then. The space agency first tested their suitability for crewed spacecraft during the later Gemini missions in 1965, and Francis Thomas Bacon developed the core technology all the way back in 1932.
So one has to ask…if fuel cell technology is nearly 100 years old, and was reliable and capable enough to send astronauts to the Moon back in 1960s, why don’t we see them used more today?
Continue reading “Ask Hackaday: Where Are All The Fuel Cells?”
Death Of The Cheque: Australia Moves On
Check (or cheques) have long been a standard way for moving money from one bank account to another. They’re essentially little more than a codified document that puts the necessary information in a standard format to ease processing by all parties involved in a given transaction.
The check was once a routine, if tedious, way for the average person to pay for things like bills, rent, or even groceries. As their relevance continues to wane in the face of newer technology, though, the Australian government is making a plan to phase them out for good.
How Laser Headlights Died In The US
Automotive headlights started out burning acetylene, before regular electric lightbulbs made them obsolete. In due time, halogen bulbs took over, before the industry began to explore even newer technologies like HID lamps for greater brightness. Laser headlights stood as the next leap forward, promising greater visibility and better light distribution.
Only, the fairytale didn’t last. Just over a decade after laser headlights hit the market, they’re already being abandoned by the manufacturers that brought them to fruition. Laser headlights would end up fighting with one hand behind their back, and ultimately became irrelevant before they ever became the norm.
The Terminal Demise Of Consumer Electronics Through Subscription Services
Open any consumer electronics catalog from around the 1980s to the early 2000s and you are overwhelmed by a smörgåsbord of devices, covering any audio-visual and similar entertainment and hobby needs one might have. Depending on the era you can find the camcorders, point-and-shoot film and digital cameras right next to portable music players, cellphones, HiFi sets and tower components, televisions and devices like DVD players and VCRs, all of them in a dizzying amount of brands, shapes and colors that are sure to fit anyone’s needs, desires and budget.
When by the late 2000s cellphones began to absorb more and more of the features of these devices alongside much improved cellular Internet access, these newly minted ‘smartphones’ were hailed as a technological revolution that combined so many consumer electronics into a single device. Unlike the relatively niche feature phones, smartphones absolutely took off.
Fast-forward more than a decade and the same catalogs now feature black rectangles identified respectively as smart phones, smart TVs and tablets, alongside evenly colored geometric shapes that identify as smart speakers and other devices. While previously the onus for this change was laid by this author primarily on the death of industrial design, the elephant in the room would seem to be that consumer electronics are suffering from a terminal disease: subscription services.
Continue reading “The Terminal Demise Of Consumer Electronics Through Subscription Services”






