A home-made vacuum pickup tool

Hackaday Prize 2022: Salvaged Pumps And Hoses Make A Neat Vacuum Pickup Tool

Anyone who’s ever assembled a PCB full of tiny SMD parts will have found that tweezers are not always the best tool when it comes to accurate positioning. Thin, flat components like microcontrollers can be awkward to pick up securely, while small resistors and capacitors have a tendency of snapping out of your tweezers’ grip and flying off into the sunset (or your carpet). Vacuum pickup tools can be a great help, but the most convenient models, with an electric air pump and a foot switch, can be a bit expensive. [sjm4306] shows that it doesn’t have to be that way: he built his “VacPen” mostly from reused components.

At the heart of the project is a little vacuum pump with a pen-like device hooked up to it through a flexible hose. The tip of the pen holds a pickup nozzle that came from a cheap manual pick and place tool. Both the pump and pen were salvaged from some gas analysis instrument that [sjm4306] tore apart a long time ago; the pen is especially convenient since it comes with a built-in brush-like filter that can trap any debris or tiny parts that might be accidentally swallowed.

The VacPen controller is housed inside a neat 3D printed enclosure that holds a custom PCB with an ATtiny microcontroller. The pump can be operated either through a foot switch, or by pressing on the touch-sensitive pad on top of the enclosure. [sjm4306] made this by soldering a wire to a copper penny and sticking it on the inside of the lid: simple, effective and cheap.

As you can see in the video embedded below, the VacPen is perfectly capable of picking up any kind of SMD component, and just as importantly, immediately releasing it at the desired moment. If you’re new to SMD technology, we can recommend this tutorial by [Bil Herd] that covers vacuum tweezers as well. If you’re more into automating vacuum pickup tools, this cool robot might be of your interest.

Continue reading “Hackaday Prize 2022: Salvaged Pumps And Hoses Make A Neat Vacuum Pickup Tool”

Hackaday Prize 2022: Vintagephone Links The Past To The Present (and Future)

Brrrrrrrring! Movies and TV are one thing, but the siren song of a rotary phone ringing in the same room as you is one of those sounds you carry forever. Not old enough to remember them? Ah, so what? There’s no reason to lose these beauties to the annals of time. In fact, we think more old phones should be repurposed so that present and future generations can experience the finger-hookin’ good time of the rotary dial and the high-voltage peal of those brass bells.

That’s exactly what [Giulio Pons] has done with Vintagephone — turned a rotary phone into a digital assistant with an analog interface. He’s reused all the good bits like the rotary dial, the bells, the handset, and the hang-up switch and connected them up to a Wemos ESP8266 development board with a mini motor driver shield and a voltage booster to ring the bells.

When it’s all said and done, [Giulio] will be able to set an alarm by dialing in the time, ring a number to get the current time and date, and ring another number to get the weather forecast. Reminds us of our childhood pastime of calling Time and Temperature to get outside verification that time had, in fact, passed inside the house on those boring rainy days.

Follow along with [Giulio] as the Vintagephone comes to life in the logs, which already have some great instructions for doing a similar number to an old phone you may have lying around. You can find the code on GitHub.

Got some old tech lying around? Teach it some new tricks and enter the Reuse, Recycle, Revamp round of the 2022 Hackaday Prize!

A vape pen, broken into parts, all laid out on a cutting mat

2022 Hackaday Prize: Disposable Vape Pens Turned Project Parts

Disposable vape pens, a sub-genre of electronic cigarettes, have been a fad for a few years now – they’re small self-contained devices with a rechargeable battery and some vape liquid inside. As the battery discharges and the liquid runs out, the entire vape pen is typically thrown out. [Dimitar] wants to change that, however, and teaches us how to reuse as much of the vape pen as possible — as yet another underappreciated source for parts we can use in our projects.

In an extensive worklog, he breaks down and documents a vape pen’s inner workings, coupled with a video we’ve placed below the break showing ways to disassemble them. In these, he shows how we can reuse the casing and the plastic parts, should any of us be interested in a project that happens to fit the e-cig form factor. Attention is paid to the sensor that triggers the evaporation — it may look like a microphone, but is actually a purpose-built pressure-sensor with a high-side switch! He tears into one of these in a separate video, showing how to reuse it as a capacitive touch controller. He also aiming to assemble a small database of related resources on GitHub, currently, hosting the files for the protection circuit he developed as part of his recommendations for safely reusing vape pen Li-ion batteries.

[Dimitar]’s journey is ongoing, and we can’t wait to see some fun uses for these components that he will certainly stumble upon on his way! For instance, here’s a hacker using an e-cig battery to power a pair of RGB LED-adorned sunglasses, replacing the AAAA battery they originally came with. We’ve seen hackers make guides on reusing each and every part of microwave ovens, printers and laptops, and we ourselves have talked about reusing ATX power supplies and computer mice.

Continue reading “2022 Hackaday Prize: Disposable Vape Pens Turned Project Parts”

2022 Hackaday Prize: ArmaLamp Provides Light, No Matter What

Instant access to electric light is a luxury that most of us take for granted, but in times of crisis, the power is often the first thing to go. So whether you’re worried about a natural disaster or the outbreak of war, a reliable source of light is a must-have in your emergency kit. Creator [bobricius] calls his is ArmaLamp the “Armageddon resistant night lamp”, and while we’re not eager to test that particular claim, it certainly looks robust enough to get you through some tough times.

The basic idea behind the ArmaLamp is to make a light source so simple that, outside of being physically destroyed, it can’t fail. That means deleting the mechanical power switch and designing the circuit so the LED light will kick on automatically in the dark. Rather than using a traditional rechargeable battery, the solar powered ArmaLamp stores its charge in a 10 farad supercapacitor that can be charged and depleted daily without having to worry about long-term degradation.

Charging the ArmaLamp with a simple solar cell is clearly out of the question as it would represent not just a single point of failure, but a particularly fragile one at that. Instead, [bobricius] is using an array of six BPW34 photodiodes that come in a hard plastic package. Combined with an efficient driver circuit that can run the LED even when the supercap is down to 0.3 V, leaving the ArmaLamp outside during the day should provide you with four hours of ultra-reliable light every night.

Continue reading “2022 Hackaday Prize: ArmaLamp Provides Light, No Matter What”

A small PCB with an OLED screen showing a Dinosaur Game

Hackaday Prize 2022: RunTinyRun Is A Fully Solar-Powered, Portable Dinosaur Game

Fully solar-powered handheld gadgets have so far mostly been limited to ultra-low power devices like clocks, thermometers and calculators. Anything more complicated than that will generally have a battery and some means to charge it. An entirely solar-powered video game console is surely out of reach. Or is it? As [ridoluc] shows, such a device is actually possible: the RunTinyRun gets all its power directly from the Sun.

To be fair, it’s not really a full-fledged game console. In fact it doesn’t even come close to the original Game Boy. But RunTinyRun is a portable video game with an OLED display that’s completely powered by a solar panel strapped to its back. It will run indefinitely if you’re playing outside on a sunny day, and if not, letting it charge for a minute or two should enable thirty seconds of play time.

The game it runs is a clone of Google’s Dinosaur Game, where you time your button presses to make a T-Rex jump over cacti. As you might expect, the game runs on an extremely minimalist hardware platform: the main CPU is an ATtiny10 six-pin micro with just 1 kB of flash. The game is entirely written in hand-crafted assembly, and takes up a mere 780 bytes. A 0.1 farad supercap powers the whole system, and is charged by a 25 x 30 mm2 solar cell through a boost converter.

RunTinyRun is a beautiful example of systems design within strict constraints on power, code size and board area. If you’re looking for a more capable, though slightly less elegant portable gaming console, have a look at this solar-powered Game Boy.
A Dinosaur Game implementation running on a breadboard setup

Hackaday Prize 2022: Glass Tube Solar Thermionic Converters

Typically, if you want to convert solar energy into electrical energy, you use either photovoltaic (PV) cells, or you use the sunlight to create steam to turn a turbine. Both of these methods are well-established and used regularly in both small- and grid-scale applications. However, [Nick Poole] wanted to investigate an alternative method, using thermionic converters for solar power generation.

[Nick] has been gearing up to produce various styles of vacuum tubes, and noted that the thermionic effect that makes them work could also be used to generate electricity. They are highly inefficient and produce far less power than a photovoltaic solar cell, meaning they’re not in common use. However, as [Nick] notes, unlike PV cells etched in silicon, a thermionic converter can be built with basic glassworking tools, requiring little more than a torch, a vacuum pump, and a spot welder.

Experiments with a large lens to focus sunlight onto a 6V3A diode tube showed promise. [Nick] was able to generate half a volt, albeit at a tiny current, with the design not being optimized for thermionic conversion. Further experiments involved electrically heating a pair of diode tubes, which was able to just barely light an LED at 1.7 V and a current of 7.5 uA. The conversion efficiency was a lowly 0.00012%, around 5 orders of magnitude worse than a typical PV cell.

[Nick]’s hope is that he can produce a tube designed specifically to maximize thermionic conversion for energy generation purposes. It’s likely there is some low-hanging fruit in terms of gains to be made simply by optimizing the design for this purpose, even if the technique can’t compete with other solar generation methods.

In any case, we’re eager to see what [Nick] comes up with! We love to see makers building tubes in their own home workshops.

Continue reading “Hackaday Prize 2022: Glass Tube Solar Thermionic Converters”

The 2022 Hackaday Prize Hack Chat Kicks Things Off

The 2022 Hackaday Prize is on, and we’ve already seen some incredible submissions by folks who believe their idea just might have what it takes to make the world a better place. But as with all contests, it’s good to understand all the rules before you get too involved. We promise nothing’s hidden in the fine print, but we certainly don’t fault anyone who wants to make sure.

Which is why Majenta Strongheart, Head of Design and Partnerships at our parent company Supplyframe, stopped by this week’s Hack Chat to answer any and all questions the community had about this global hardware design challenge. A lot of ground was covered in an hour, with Majenta making sure everyone’s questions and concerns were addressed to their satisfaction. After all, with a residency at the Supplyframe DesignLab and a total of $125,000 in prize money up for grabs, we want to make sure everyone’s got the facts straight.

So what burning questions did the Hackaday community have about this year’s Prize? Several people wanted to know more about the themes of sustainability, circularity, and climate crisis resiliency. For example, what exactly does circularity mean in this context? While Challenge #2 “Reuse, Recycle, Revamp” most clearly exemplifies the idea, Majenta explained that this time around the judges will be giving particular consideration to ideas that limit the extraction of raw materials and the production of waste.

For a practical example, 2022 Hackaday Prize judge James Newton pointed to the direct granule extruder designed by Norbert Heinz. The project, which took 5th place last year, allows waste plastic to easily be repurposed in a desktop 3D printer. This includes objects which the printer itself produced, but for whatever reason, are no longer desired or needed. This “life-cycle” for printed objects, wherein the same plastic can be printed over and over again into new objects, is a perfect encapsulation of circularity within the context of this year’s prize.

Others were looking for clarification on the contest rules. Specifically, there was some confusion about entering existing projects into the competition. Did it have to be a completely new idea? What if you’d already been working on the project for years, but had never shown it publicly before? Not to worry — existing projects can absolutely be entered into the 2022 Hackaday Prize. In fact, even if the project had already been entered into the Hackaday Prize previously, it’s still fair game.

But there is an important caveat: to be eligible for this year’s Prize, the project MUST be documented on a new Hackaday.io page. Additionally, if it’s a project that has previously been entered into a Hackaday contest, you’ll have to show that it is “significantly different from when previously entered and show meaningful development during the course of the Contest“, as stated in the official rules. In layman’s terms, it means that anyone who tries to submit and old and outdated Hackaday.io page into the competition will find their entry disqualified.

Towards the end of the Chat, Erin Kennedy, a Hackaday Prize veteran that readers may know better as “Erin RobotGrrl” brought up the subject of mentors. In previous years, hardware luminaries like Andrew “Bunnie” Huang and Mitch Altman were made available to offer advice and guidance to the individuals and teams behind the Prize entries. While very proud of this effort, Majenta explained that at least for now, Mentor Sessions are on hold until that aspect of the program can be retooled. The main issue is figuring out the logistics involved; planing video calls between several groups of busy folks is just as tricky as it sounds. That said, bringing the Mentor Sessions back for 2022 isn’t completely out of the question if there’s enough interest from the competitors.

We appreciate Majenta taking the time to directly answer questions from the community, and hope that those who had their questions or concerns addressed during the Chat will ultimately decide to toss their hat into the ring. With a worthy goal and plenty of opportunities to win, we sincerely want to see as many people as possible get their entries in before the October 16th deadline. If you’re ready to take the next step, head over to the Contest page and show us what you’ve got.


The Hack Chat is a weekly online chat session hosted by leading experts from all corners of the hardware hacking universe. It’s a great way for hackers connect in a fun and informal way, but if you can’t make it live, these overview posts as well as the transcripts posted to Hackaday.io make sure you don’t miss out.