Hackaday Prize Entry: Adding HDMI To Small Displays

LCDs come in a lot of sizes, and there’s a lot written about pushing pixel data out to larger displays. Smaller LCDs, like the 4, 5 and 7 inch variety, aren’t used much, because no one seems to know how to drive the things. For [Joe]’s Hackaday Prize Entry, he’s creating an open source interface for tiny LCDs, making it easy and cheap to add one to everything with an HDMI port.

[Joe]’s Open LCD Interface comes on two boards, with the first providing connections to an LCD, all the power circuitry required, and a bunch of pads to break out every IO line. The second part of the puzzle is a decoder that takes HDMI signals and drives a small LCD.

HDMI decoders are nothing new to the world of hobby electronics – there are multiple projects that give the BeagleBoard a display through HDMI. Even Adafruit sells one of these converters. [Joe]’s board has another trick up its sleeve, though: it can give any microcontroller a high-resolution display, too.

There’s another module that connects to [Joe]’s breakout board that turns the LCD into an SPI display. This means any microcontroller can drive a high-resolution display. It’s fast, too: in the video below, [Joe]’s SPI display can push pixels at least as fast as any other microcontroller-based display we’ve seen.

It’s a great project, and a by opening up the doors to millions of cheap LCDs on eBay and Alibaba, [Joe] has a great entry for the Hackaday Prize on his hands.

Continue reading “Hackaday Prize Entry: Adding HDMI To Small Displays”

Hackaday Prize Entry: Open-Source Myoelectric Hand Prosthesis

Hands can grab things, build things, communicate, and we control them intuitively with nothing more than a thought. To those who miss a hand, a prosthesis can be a life-changing tool for carrying out daily tasks. We are delighted to see that [Alvaro Villoslada] joined the Hackaday Prize with his contribution to advanced prosthesis technology: Dextra, the open-source myoelectric hand prosthesis.

dextra_handDextra is an advanced robotic hand, with 4 independently actuated fingers and a thumb with an additional degree of freedom. Because Dextra is designed as a self-contained unit, all actuators had to be embedded into the hand. [Alvaro] achieved the necessary level of miniaturization with five tiny winches, driven by micro gear motors. Each of them pulls a tendon that actuates the corresponding finger. Magnetic encoders on the motor shafts provide position feedback to a Teensy 3.1, which orchestrates all the fingers. The rotational axis of the thumb is actuated by a small RC servo.

mumai_boardIn addition to the robotic hand, [Alvaro] is developing his own electromyographic (EMG) interface, the Mumai, which allows a user to control a robotic prosthesis through tiny muscle contractions in the residual limb. Just like Dextra, Mumai is open-source. It consists of a pair of skin electrodes and an acquisition board. The electrodes are attached to the muscle, and the acquisition board translates the electrical activity of the muscle into an analog voltage. This raw EMG signal is then sampled and analyzed by a microcontroller, such as the ESP8266. The microcontroller then determines the intent of the user based on pattern recognition. Eventually this control data is used to control a robotic prosthesis, such as the Dextra. The current progress of both projects is impressive. You can check out a video of Dextra below.

Continue reading “Hackaday Prize Entry: Open-Source Myoelectric Hand Prosthesis”

This Is Your Epic Weekend To Hack Together Anything

Wow how the time flies. It seems like only couple of weeks ago we were unveiling the film we shot at Salton Sea to launch this, our third global hacking initiative called The Hackaday Prize. What we want is to see you use those skills of yours to Build Something that Matters. Come up with a way to solve a technology problem and score yourself some sweet prizes. This weekend, anything goes.

The current challenge is called Anything Goes and the deadline to enter your project is Monday at 7am PDT. You need to show off a prototype of your idea, and have at least four (4) build logs about your work on your project page. Use the menu in the left sidebar of your project page to enter it in the Hackaday Prize (or in the Anything Goes round if you entered it during the first challenge).

Are you confused about what is happening here? Let’s hit the high points:

  • Every five weeks we start a new Challenge Round which is basically a whole new contest. You can enter now — it’s not too late. If you entered previously you may enter again.
  • From each challenge round we will select twenty projects to move on to the final round, and award them each $1,000 for their achievement.
  • When all five rounds are complete, those hundred final projects will be viewed by our expert judges who will pick five winners who get the big cash prizes: $150k, $25k, $10k, $10k, and $5k. The Grand Prize winner will also be offered a residency at the Supplyframe Design Lab in Pasadena, CA.
  • The moral of the story is: build something awesome because that’s what you do. But this weekend, make it something that helps people and you just might be one of the twenty moving on for a shot at a much larger purse.

It’s true, we have a lot of projects in the running for this year’s prize; right about 700 entries at the time of writing. But, like I said above, each Challenge is a new contest. We are just about to hit 300 entries for Anything Goes. Twenty will be finalists, which means your entry has about a 1 in 15 chance at this point. Make this weekend your personal hackathon — build it, document it, and don’t forget to submit it.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Robotic Prosthetic Leg Is Open Source And 3D-Printable

We’ve been 3D-printing parts for self-replicating machines before, but we’ve been working on the wrong machines. Software and robotics engineer [David Sanchez Falero] is about to set it right with his Hackaday Prize entry, a 3D-printable, open source, robotic prosthetic leg for humans.

[David] could not find a suitable, 3D-printable and customizable prosthetic leg out there, and given the high price of commercial ones he started his own prosthesis project named Drakkar. The “bones” of his design are made of M8 steel threaded rods, which help to keep the cost low, but are also highly available all over the world. The knee is actively bent by a DC-motor and, according to the source code, a potentiometer reads back the position of the knee to a PID loop.

drako_footWhile working on his first prototype, [David] quickly found that replicating the shape and complex mechanics of a human foot would be too fragile when replicated from 3D-printed parts. Instead, he looked at how goat hooves managed to adapt to uneven terrain with only two larger toes. All results and learnings then went into a second version, which now also adapts to the user’s height. The design, which has been done entirely in FreeCAD, indeed looks promising and might one day compete with the high-priced commercial prosthesis.

The HackadayPrize2016 is Sponsored by:

Hackaday Prize Entry: Worldwide Educational Infrastructure

The future of education is STEM, and for the next generation to be fitter, happier, and more productive, classrooms around the world must start teaching programming, computer engineering, science, maths, and electronics to grade school students. In industrialized countries, this isn’t a problem: they have enough money for iPads, Chromebooks, and a fast Internet connection. For developing economies? That problem is a little harder to solve. Children in these countries go to school, but there are no racks of iPads, no computers, and even electricity isn’t a given. To solve this problem, [Eric] has created a portable classroom for his entry into this year’s Hackaday Prize.

Classrooms don’t need much, but the best education will invariably need computers and the Internet. Simply by the virtue of Wikipedia, a connection to the Internet multiplies the efforts of any teacher, and is perhaps the best investment anyone can make in the education of a child. This was the idea behind the One Laptop Per Child project a decade ago, but since then, ARM boards running Linux have become incredibly cheap, and we’re getting to a point where cheap Internet everywhere is a real possibility.

To build this portable classroom, [Eric] is relying on the Raspberry Pi. Yes, there are cheaper options, but the Pi is good enough. A connection to online resources is required, and for that [Eric] is turning to the Outernet. It’s a system that will broadcast educational material down from orbit, using ground stations made from cheap and portable KU band satellite dishes and cheap receivers.

When it comes to educational resources for very rural communities, the options are limited. With [Eric]’s project, the possibilities for educating students on the basics of living in the modern world become much easier, and makes for a great entry into this year’s Hackaday Prize.

Continue reading “Hackaday Prize Entry: Worldwide Educational Infrastructure”

Hackaday Prize Entry: Industrial Servo Control On The Cheap

[Oscar] wonders why hobby projects ignore all the powerful brushless motors available for far less than the equivalent stepper motors, especially with advanced techniques available to overcome their deficiencies.  He decided it must be because there is simply not a good, cheap, open source motor controller out there to drive them precisely. So, he made one.

Stepper motors are good for what they do, open-loop positioning along a grid, but as far as industrial motors go they’re really not the best technology available. Steppers win on the cost curve for being uncomplicated to manufacture and easy to control, but when it comes to higher-end automation it’s servo control all the way. The motors are more powerful and the closed-loop control can be more precise, but they require more control logic. [Oscar]’s board is designed to fill in this gap and take full advantage of this motor control technology.

The board can do some pretty impressive things for something with a price goal under $50 US dollars. It supports two motors at 24 volts with up to 150 amps peak current. It can take an encoder input for full closed loop control. It supports battery regeneration for braking. You can even augment a more modest power supply to allow for the occasional 1 KW peak movement with  the addition of a lithium battery. You can see the board showing off some of its features in the video after the break.

Continue reading “Hackaday Prize Entry: Industrial Servo Control On The Cheap”

Hackaday Prize Entry: Sniffing Defibrillator Data

There’s a lot of implantable medical technology that is effectively a black box. Insulin pumps monitor blood sugar and deliver insulin, but you can’t exactly plug in a USB cable and download the data. Pacemakers and cardiac defibrillators are the same way. For these patients, data is usually transmitted to a base station, then sent over the Internet to help doctors make decisions. The patient never gets to see this data, but with a little work and a software defined radio, a team on Hackaday.io is cracking the code to listen in on these implanted medical devices.

The team behind ICeeData was assembled at a Health Tech Hackathon held in Latvia last April. One of the team members has an implanted defibrillator keeping her ticker in shape, and brought along her implant’s base station. The implant communicates via 402-405MHz radio, a region of the spectrum that is easily accessible by a cheap RTL-SDR TV Tuner dongle.

Right now the plan is to intercept the communications between the implant and the base station, decode the packets, decipher the protocol, and understand what the data means. It’s a classic reverse engineering task that would be the same for any radio protocol, only with this ones, the transmissions are coming from inside a human.

 

The HackadayPrize2016 is Sponsored by: