Broken 3D Printer Turned Scanning Microscope

A few years ago, [Wayne] managed to blow out the main board of his Flashforge Finder attempting to change the fan. But the death of one tool ended up being the birth of another, as he ended up using its mechanical components and a Raspberry Pi to create an impressive scanning microscope.

Scan of Ulysses S. Grant from a US $50 bill

As you might have guessed from the name, the idea here is to scan across the object with a digital microscope to create an enlarged image of the entire thing. This requires some very precise control over the microscope, which just so happens to be exactly what 3D printers are good at. All [Wayne] had to do was remove the hotend, and print some adapter pieces which let him mount a USB microscope in its place.

The rest is in the software. The Raspberry Pi directs the stepper motors to move the camera across the object to be scanned in the X and Y dimensions, collecting thousands of individual images along the way. Since the focus of the microscope is fixed and there might be height variations in the object, the Z stage is then lifted up a few microns and the scan is done again. Once the software has collected tens of thousands of images in this manner, it sorts through them to find the ones that are in focus and stitch them all together.

The process is slow, and [Wayne] admits its not the most efficient approach to the problem. But judging by the sample images on the Hackaday.io page, we’d say it gets the job done. In fact, looking at these high resolution scans of 3D objects has us wondering if we might need a similar gadget here at the Hackaday Command Bunker.

The project is actually an evolution of an earlier attempt that used gutted optical drives to move the microscope around.

Spring Clamp Is Completely 3D Printed

Dual-filament printers may seem like a gimmick to the uninitiated, but they open up some powerful options for advanced designs. [Darren Tarbard] shows this off with a nifty spring clamp that is 3D printed in a single operation.

The clamp is similar to one you’d find at any hardware store. Standard PLA or ABS filaments can be used for the main body of the clamp, which has an integrated hinge. However, instead of having a typical metal spring, the element is instead 3D printed. The spring is created out of TPU filament, and printed in place. Different in-fill percentages on the spring component can vary the characteristics of the spring, making for a softer or firmer grip.

It’s a tidy example of the applications of dual-filament printing – and far more useful than using it to print bi-color Pikachus. 3D printers have much to offer in the world of tooling; they can even turn a bench vice into an effective press brake. Video after the break.

Continue reading “Spring Clamp Is Completely 3D Printed”

Tumble Polisher Smooths Parts With Ease

When you’re 3D printing parts, it’s easy to create pieces with all manner of complex geometry. However, you’re often stuck dealing with unsightly layer lines and other surface imperfections. [reitter_m] chooses to get around this through the use of a tumble polisher of his own design.

The polisher uses a drum made out of a glass jar sourced from IKEA. A 3D printed gear is printed to size, and then fitted around the outside. This allows the drum to be turned by a motor fitted into the base of a 3D printed cradle. A simple gear motor is used to spin the drum nice and slowly, powered by a 12 V, 500 mA supply.

It’s a build that uses readily available parts, and should be a cinch to recreate by anyone with a 3D printer. The later revision uses an even more common IKEA jar, making it even easier to copy the build no matter where you are in the world. It even uses herringbone gears which gives it a very offbeat look. We’ve seen other hacked tumbler projects too, like this one built around an old case fan. Video after the break.

NanoVNA Tests Antenna Pattern

When [Jephthai] wanted to build his own Yagi antenna, he turned to MMANA software for antenna modeling. This is an antenna analysis program that uses the moment method to calculate parameters for different antenna geometries. After building the Yagi, the predicted tuning and impedance matched the real antenna nicely. But what about the radiation pattern? To test that, he used a NanoVNA and a clever test setup.

He needed a test spot out of the antenna’s near field so he set up his workstation 18 feet away from the test antenna which was on a mount that could rotate. On the edge of the workstation table — affixed with painter’s tape — is a NanoVNA connected to a laptop.

Continue reading “NanoVNA Tests Antenna Pattern”

Stacks Of Spring Washers Power The Drawbar On This CNC Mill Conversion

With Tormach and Haas capturing a lot of the entry-level professional market for CNC machines, we don’t see too many CNC conversions of manual mills anymore. And so this power drawbar conversion for a Precision Matthews mill really caught our eye.

What’s that, you say? Didn’t [Physics Anonymous] already build a power drawbar for a mill? They did, and it was quite successful. But that was based on a pneumatic impact wrench, and while it worked fine on a manual mill, the same approach would be a bit slow and cumbersome on a CNC mill. For this build, they chose a completely different approach to providing the necessary upward force to draw the collet into the collet holder and clamp down on the tool: springs. Specifically, Belleville spring washers, which are shaped like shallow cups and can exert tremendous axial force over a very short distance.

[PA] calculated that they’d need to exert 2,700 pounds (12,000 Newtons) of force over a length of a couple of inches, which seems outside the Belleville washer’s specs. Luckily, the springs can be stacked, either nested together in “series” to increase the load force, or alternating in “parallel” to apply the rated force over a greater distance. To compress their stack, they used a nifty multi-stage pneumatic cylinder to squash down the springs and release the collet. They also had to come up with a mechanism to engage to machine’s spindle only when a tool change is called for. The video below details the design and shows the build; skip to 11:32 to see the drawbar in action.

We’re looking forward to the rest of [Physics Anonymous]’ conversion. They’re no strangers to modifying off-the-shelf machines to do their bidding, after all – witness their improvements to an SLA printer.

Continue reading “Stacks Of Spring Washers Power The Drawbar On This CNC Mill Conversion”

Building A Real Wooden Table Saw

A table saw is one of those tools that aren’t strictly necessary to have, but immensely helpful if you do happen to have one around. The folks at [I Build It] have made a three part series that features a homemade table saw build, so you can finally get around to adding one to your makerspace.

The build uses a real table saw arbor and is made from Baltic birch plywood and solid wood, with some plastic sheets for the trunnions and top. The blade is housed in a blade lift made out wooden panels with a pivot point and slot for the lift mechanism. Bearings allow the blade the freedom of movement, while a curved cutout allows it to stay flat against the wall of the slot while the blade lift mechanism moves.

Meanwhile a reused motor from a previous table saw is dusted, cleaned, and rewired to run in reverse. While most table saws only need two trunnions, a third is used for supporting the motor, since it has to move with the lift and tilt. Once the lift/tilt mechanism is complete, the frame for the table saw is more straightforward, with many steps involving clamping, measuring, cutting, fitting, and painting the assembly. For the final few steps, a switched is mounted outside the table saw in a small box that connected to the power supply and motor, as well as a shop vac for handling dust collection from the saw. While the enclosure isn’t a metal box, as long as the connections are secured properly the wires shouldn’t come loose.

If you want to see other examples of homemade table saws, check out this teeny tiny saw and this kid-friendly table saw build.

Continue reading “Building A Real Wooden Table Saw”

Commercial Circuit Simulator Goes Free

If you are looking for simulation software, you are probably thinking LTSpice or one of the open-source simulators like Ngspice (which drives Oregano and QUCs-S), or GNUCap. However, there is a new free option after the closing of Spectrum Software last year: Micro-Cap 12. You may be thinking: why use another closed-source simulator? Well, all the simulators have particular strengths, but Micro-Cap does have very nice features and used to retail for about $4,500.

The simulator boasts a multipage schematic editor, native robust digital simulation, Monte Carlo analysis, 33,000 parts in its library, worst-case and smoke analysis, Smith charts, and it can even incorporate spreadsheets. There’s a built-in designer for active and passive filters. Have a look at the brochure and you will see this is a pretty serious piece of software. And now it’s at least free as in beer.

Continue reading “Commercial Circuit Simulator Goes Free”