Rock Tumbler Doubles As Ice Cream Maker

When working with limited space or even with limited funding, finding a tool that can do many things for less space or cost than its separate counterparts is a tempting option. The most common downside is that these tools often can’t perform as well as the single-purpose tools they replace, with the obvious example being a pocket-sized multitool or Swiss Army knife. Even things like combination drill and driver tools, adjustable crescent wrenches, or even a kitchen stand mixer can’t quite perform as well as their dedicated counterparts. So when we find a tool that can do two things equally well, like this rock tumbler that can also make a delicious bowl of ice cream, it’s definitely noteworthy.

The project comes to us by way of [North_Stordeur] whose main goal was to create a delicious bowl of ice cream but was deterred by the cost of purpose-built ice cream makers. Making ice cream isn’t a particularly complex process, though, and [North_Stordeur ] realized that grinding down ice for ice cream shares similarities with tumbling and polishing rocks. Normally, the rocks to be polished are placed in a drum with grit and a liquid, then the drum is placed on the tumbler and spun, which causes the rocks to bounce around inside the drum with the grit and smooth out relatively quickly. Replacing sugar for grit, ice for rocks, and milk for the liquid, the ice eventually is worn all the way down, creating an excellent bowl of ice cream.

Truly, the only downside we could see with a build like this is that the drum in the National Geographic rock tumbler that [North_Stordeur] chose for this project looks like it would only make a single serving at a time. However, with picky eaters around who like their own additions to ice cream, this might be a perk as everyone can make exactly the style they like with their own choice of flavors. It’s an excellent discovery for anyone already grinding and polishing rocks or someone who has already built a DIY ball mill for any number of other uses.

Review: InfiRay P2 Pro Thermal Camera

It probably won’t surprise you to learn that Hackaday is constantly hounded by companies that want us to review their latest and greatest gadget. After all, getting us to post about their product is cheaper, easier, and arguably more effective than trying to come up with their own ad campaign. But if you’ve been with us for awhile, you’ll also know that in-house reviews aren’t something we actually do very often.

The reason is simple: we’re only interested in devices or products that offer something useful or unique to this community. As such, the vast majority of these offers get ignored. I’ll give you an example. For whatever reason, multiple companies have been trying desperately to send me electric bikes with five-figure price tags this year. But since there’s no obvious way to turn that into useful content for the readers of Hackaday, I’m still stuck pedaling myself around like it’s the 1900s. I kid of course…I haven’t dared to get on a bike in a decade.

So I don’t mind telling you that, when InfiRay contacted me about reviewing their P2 Pro thermal camera, the email very nearly went into the trash. We’ve seen these kind of phone-based thermal cameras before, and it seemed to be more of the same. But after taking a close look at the specs, accessories, and claims laid out in the marketing material, I thought this one might be worth checking out first-hand.

Continue reading “Review: InfiRay P2 Pro Thermal Camera”

Thermal Camera Reviewed

We keep thinking about buying a better thermal camera, as there are plenty of advantages. While [VoltLog’s] review of the Topdon TC002 was interesting though, it has a connector for an iPhone. Even if you aren’t on Android, there is a rumor that Apple may (or may be forced to) change connectors which will make it more difficult to connect. Of course, there will be adapters, and you can get a USB C version of the same camera.

Technically, the camera is pretty typical of other recent cameras in this price range, and they probably all use the same image sensor. The camera provides 256×192 images.

Continue reading “Thermal Camera Reviewed”

The Crystal (High Voltage) Method

Do high voltages affect the resonant frequency of a crystal? Honestly, we never thought about it, but [Joe] did and decided to risk his analyzer to find out. He started with some decidedly old-school crystals like you might have found in a 1960-era Novice rig. Since the crystal is piezoelectric, he wondered if using a high DC voltage to bend the crystal to move the frequency to create a variable crystal oscillator (sometimes called a VXO).

He created a rig to block DC away from the network analyzer and then feed voltage directly across the crystal. The voltage was from an ESD tester that provides over 1000 volts.

Getting a crystal to change much in frequency is difficult, which is why they are useful. So we weren’t surprised that even at very high voltages, the effect wasn’t very large. It did change the frequency, but it just wasn’t very much.

At one point, it looked like he might have killed the test equipment. There was a time when letting the smoke out of a network analyzer would have been a costly mistake, but these days the cost isn’t that prohibitive. In the end, this experiment probably doesn’t produce any practical results. Still, it is interesting, and we always enjoy watching anything that gives us more intuition about the behavior of circuits or, in this case, circuit elements.

If you need a refresher on crystal oscillators, we can help. There are other ways to modify a crystal’s frequency, of course.

Continue reading “The Crystal (High Voltage) Method”

More Ideas For Setting Up An Electronics Workbench

Setting up an electronics work area is a highly personal and situational affair, with many interesting problems to be solved, and for many of us, significant budget constraints. The requirements for electronics development vary wildly depending upon the sort of work to be undertaken, but there is core equipment that many of us would consider a bare minimum for usability. [Badar Jahangir Kayani] is at the start of his career as an electrical engineer, and has documented the kitting out of his personal work areas for others to learn from.

A place for everything, everything in its place

As we already touched upon, the cost is often the main driving factor determining what we end up with, and this cost-vs-performance/quality tradeoff is what makes some of us fret over a buying decision. Buying secondhand off eBay is an option, but a lack of warranty and the unknowable condition are not great selling points.

[Badar] has a good grasp of the basic concepts of usability, such as keeping the most frequently used tools, instruments, and components out in the open. Less frequently used stuff is stored in drawers, bins, and compartment boxes. Buying the same storage systems keeps things as consistent as much as possible since it makes storing them easier. We were particularly interested in the use of the cloud-based database solution, Airtable used to create a parts database for minimal outlay.

Oooh! Cable tray action

There is also a lot of detail about how to walk that cost/quality/performance tightrope and get the best-valued gear currently on the market. Some notable examples are the UNI-T UT61E Digital Multimeter for general test use, the Controleo3 reflow controller for SMT assembly, and the Omnifixo OF-M4 magnetic fixament kit for that fiddly wiring part. [Badar] also recommends the FumeClear Solder Fume Extractor, although they lament that particular bit of kit is still under evaluation.

Obviously, we’ve talked about work areas a lot on these pages, like this time. For those with more space, this flippin’ awesome bench will be of interest, and if space is tight (or travel is a regular thing) might we suggest this 3D printed DIN-rail mounting cube as a starting point?

Ask Hackaday: What’s Your “Tactical Tool” Threshold?

With few exceptions, every field has a pretty modest set of tools that would be considered the minimum for getting most jobs done. A carpenter can make do with tools that would fit in a smallish bag, while a mechanic can handle quite a few repairs with a simple set of socket wrenches and other tools. Even in electronics, a lot of repairs and projects can be tackled with little more than a couple of pairs of pliers, some cutters, and a cheap soldering iron.

But while the basic kit of tools for any job may be enough, there will always be those jobs that need more tools. Oh sure, sometimes you can — and should — make do with what you’ve got; I can’t count the number of times I’ve used an elastic band wrapped around the handles of a pair of needlenose pliers as an impromptu circuit board vise. But eventually, you’re going to come upon a situation where only the “real” tool will do, and substitutes need not apply.

As I look around my shop and my garage, I realize that I may have a problem with these “tactical tool” purchases. I’ve bought so many tools that I’ve used far fewer times than I thought I would, or perhaps even never used, that I’m beginning to wonder if I tackle projects just as an excuse to buy tools. Then again, some of my tactical purchases have ended up being far more useful than I ever intended, which has only reinforced my tendency toward tool collecting. So I thought I’d share a few of my experiences with tactical tools, and see how the community justifies tactical tool acquisitions.

Continue reading “Ask Hackaday: What’s Your “Tactical Tool” Threshold?”

JITX Spits Out Handy USB Cable Tester

When USB first came on the scene, one of the benefits was that essentially any four conductors could get you to the point where you could send information at 12 Mbps. Of course everything is faster these days, and reaching today’s speeds requires a little bit more fidelity in the cables. This simple tester makes sure that your modern cables are actually up to the task.

One of the design goals of this project is to automate away the task of testing cables or finding one that works, especially before thinking a problem with a device is somewhere in software, spending hours or days debugging, before realizing that it’s actually being caused by a hardware malfunction. The small PCB has two USB-C fittings to plug in both of the ends of a cable to, and between those connectors there is a number of LEDs. Each LED is paired to one the many conductors within the USB cable, and not only does it show continuity of these conductors but it can also show a high resistance connection via a dimly-lit or off-color display from an LED.

One of the other interesting facets of this build is the use of JITX, which is a software-defined electronics CAD tool which allows PCB design to be automated by writing out the requirements of the PCB into code, rather than drawing it manually. It’s worth a look, and a lot of the schematics of this particular project as well as some discussion on this software can be found on the project’s GitHub page. Incidentally, if this tester looks familiar, it’s probably because your’re thinking of the open source hardware USB tester created by [Álvaro Prieto].