Mapping Out The LEDs On An Outlet Tester

The concept of an outlet tester is pretty simple: plug the gadget into a suspect wall receptacle, and an array of LEDs light up in various patterns to alert the user to any wiring faults. They’re cheap, reliable, and instantaneous. Most people wouldn’t give them much more thought than that, but like any good hacker, [Yeo Kheng Meng] wanted to know how these devices worked.

After picking up a relatively advanced model that featured an LCD display capable of showing various stats such as detected voltage in addition to the standard trio of LEDs, he started by using some test leads to simulate various fault conditions to understand the basic principle behind its operation. The next step was to disassemble the unit, which is where things went briefly sideways — it wasn’t until [Yeo Kheng Meng] and a friend had nearly cut through the enclosure that they realized it wasn’t ultrasonically welded liked they assumed, and that the screws holding it together were actually hidden under a sticker. Oops.

The write-up includes some excellent PCB shots, and [Yeo Kheng Meng] was able to identify several components and ascertain their function. He was even able to find some datasheets, which isn’t always such an easy task with these low-cost devices. Unfortunately the MCU that controls the device’s more advanced features is locked away with a black epoxy blob, but he was able to come up with a schematic that explains the rather elegant logic behind the LED display.

This isn’t the first time [Yeo Kheng Meng] has taken apart an interesting piece of hardware for our viewing pleasure, and given the fine job he does of it, we hope it’s not the last either.

Junkbox Build Keeps Tesla Coils Perfectly Varnished

Admittedly, not a lot of people have a regular need to varnish coils. It’s mainly something that Tesla coil builders and other high-voltage experimenters are concerned with. But since that group probably constitutes a not insignificant fraction of the Hackaday audience, and because there are probably more applications for this homebrew coil varnishing setup, we figured it would be a good idea to share it.

For [Mads Barnkob], coil maintenance isn’t something to take lightly. If you check out his Kaizer Power Electronics channel on YouTube, you’ll see that he has quite a collection of large, powerful Tesla coils, some of which are used for demos and shows, and others that seem to be reserved mainly for blowing stuff up. To prevent one of his coils from joining the latter group, keeping the coat of insulating varnish on the secondary coil windings in tip-top condition is essential.

The setup seen in the video below helps with that tedious chore. Built entirely from scraps and junk bin parts, the low-speed, low-precision lathe can be set up to accommodate coils of all sizes. In use, the lathe turns the coil very slowly, allowing [Mads] to apply an even coat of varnish over the coil surface, and to keep it from sagging while it dries.

[Mads]’ setup is probably not great for coil winding as it is, but for coil maintenance, it’s just the thing. If your needs are more along the lines of a coil winder, we’ve got a fully automated winder that might work for you.

Continue reading “Junkbox Build Keeps Tesla Coils Perfectly Varnished”

3D Printed Braiding Machine Brings Back Some History

Mechanizing the production of textiles was a major part of the industrial revolution, and with the convenience of many people are recreating the classic machines. A perfect example of this is [Fraens]’ 3D printed braiding machine, which was reverse engineered from old photos of the early machines.

The trick behind braiding is the mesmerizing path the six bobbins need to weave around each other while maintaining the correct tension on the strands. To achieve this, they slide along a path in a guide plate while being passed between a series of guide gears for each section of the track. [Fraens] cut the guide plate components and the base plate below it from acrylic and mounted them together with standoffs to allow space for the guide gears.

Each of the six bobbins contains multiple parts to maintain the correct tension. The strands are fed through a single guide ring, where the braid is formed, and through pair of traction gears. All the moving parts are driven by a single 24 V motor and can produce about 42 cm of a braided cord per minute, and you can even set up the machine to braid around an inner core.

This braiding machine is just one in a series of early industrial machines recreated by [Fraens] using 3D printing. The others include a sewing machine, and a power loom, and a generator.

Continue reading “3D Printed Braiding Machine Brings Back Some History”

RC Lawnmower Is Built To Last

Mowing the lawn is one of those tasks that someone will always be optimizing or automating. To allow him to mow the lawn while seated comfortably in the shade, [Workshop from Scratch] built an RC Lawnmower in his signature solid steel frame style.

The chassis consists of a heavy welded steel frame from square tubing, with a pair of knobbly go-kart wheels on the back and large caster wheels on the front. The actual grass-cutting part is a 173cc petrol lawnmower engine with a steel hull, mounted on an articulating subframe which can be remotely raised and lowered using a linear actuator. The rear wheels are attached to a pair of custom sprocket hubs, driven via chain by two 200 W geared DC motors to allow skid steering.

The motors and electronics are powered by a set of 18 Ah lead-acid batteries wired in parallel. The petrol engine can also charge the batteries, but its current isn’t enough to keep up while mowing. However, it does help to extend the range. All the electronics are housed in a plastic enclosure with a power switch, key start for the engine, and battery charge indicator on the lid. The power from the batteries runs through a pair of automotive relays connected to the power switch and a set of fuses for protection. For safety [Workshop from Scratch] wired a relay to the engines’ coil to shut it off remotely, or when the radio link to the controller is lost. An action cam was also mounted on the electronics box to stream a first-person view to a smartphone over WiFi.

Overall this is a very well built project, especially mechanically, and looks like the perfect platform for further self-driving using Ardurover. [rctestflight] has demonstrated the capabilities of the open source autopilot with several rovers, including a tiny lawnmower that cuts grass with Exacto blades.

Continue reading “RC Lawnmower Is Built To Last”

Homemade SawStop Attachment Is Just About As Sketchy As It Sounds

TL;DR — when [Colin Furze] is your “safety inspector,” you really should be reconsidering your project goals.

Most of us have probably by now seen the SawStop brand of self-stopping table saw, which detects when something meatier than wood has the bad taste to touch the spinning blade, more or less instantly stopping it and preventing sudden traumatic amputations. It’s an outstanding idea, and we’d love to see the technology built into all table saws. But alas, SawStop saws are priced out of reach for many woodworkers, which left [Ruth Amos] to roll her own DIY version of the system.

It should be stated right off the bat that none of what [Ruth] does here is a good idea, and that everything shown is really just a proof of concept. The basis for her build was a somewhat flimsy-looking contractor-style saw, to which [Ruth] attached an Arduino set up to detect when something conductive touches the blade. She shares no particulars on the sensing method, but our guess is capacitive coupling. She then sets about experimenting with a series of above-table gizmos to arrest the blade, with limited success, plus all the attachments would make the saw essentially useless. But working above the table does make sense in the prototyping phase, and allowed her to figure out what wouldn’t work.

In the end, it was an electromagnetic clutch from an electric lawnmower that seemed to do the trick, albeit at the expense of heavy mods to the saw and a considerable increase in the system’s angular momentum. Nonetheless, the blade stops pretty close to instantly in the old hot dog test. It doesn’t drop the blade below the table, of course, and the hot dog is a little worse for the wear, but it’s still pretty impressive.

We’ve discussed SawStop’s technology before and why it isn’t perhaps as widely available as it should be, if you’re curious.

Continue reading “Homemade SawStop Attachment Is Just About As Sketchy As It Sounds”

OpenDendrometer Can Measure How Your Tree Feels

There are various ways to measure plant health, and we’ve seen many projects creating open-source solutions. One we haven’t seen is a dendrometer, which involves measuring various physical dimensions of trees to track their health and growth. [John Opsahl] is changing this with the OpenDendrometer, a tool for tracking the diameter of tree limbs and fruit.

Tiny changes in diameter take place throughout the day, and tracking these changes allows deviations to be detected, which can be a sign of water stress. Over weeks and months, these measurements can be used to measure growth and fruits’ progress to harvest. [John] found that a digital tire tread depth gauge can work well for this application. Many of these gauges use the same electronics as the cheap digital calipers, for which the serial protocol was reverse engineered more than a decade ago. The OpenDendrometer connects the tire depth gauge to a microcontroller via a 1.5V level shifter, which logs measurements to an SD card while using a DS3231 RTC for accurate timestamps. The RTC can also be used to wake up the circuit at the required intervals to save battery power. For the initial proof of concept [John] is using an Arduino Pro Mini, but plans to move to an ESP32 at a later stage to allow wireless data transmission.

Everything will be housed in a 3D printed enclosure with a foam cord gasket to make the device weather resistant. A mounting rod on the outside of the enclosure with adjustable thumbscrews allows the OpenDendrometer to be attached to any part of the tree. We plan to keep an eye on this project and look forward to seeing the data it produces.

For the other ways of measuring plant health, we’ve covered everything from soil moisture to Normalized Difference Vegetation Index and even plant weight and even pot plant weight.

Digital Measuring Wheel Is Exactly What It Sounds Like

You may have seen surveyors (or maths students) running around with measuring wheels, counting the clicks to measure distances. [AGBarber]’s digital measuring wheel works in much the same way, but with the convenience of a measurement you can read off a screen.

The design is simple, and relies on the outer wheel of the device turning a mouse encoder wheel. This is read by anArduino Pro Mini which runs the show and records the requisite measurements. It then drives an SSD1306 OLED display which shows the measurements to the user. It’s all wrapped up in a 3D printed housing that makes it easy to roll around the small handheld device.

The wheel’s maximum measuring length is 9999.99 cm, or just under 100 meters. Given the size of the device, that’s probably more than enough, but you could always build a bigger version if you wanted to measure longer distances.

Measuring wheels make it easy to measure along curves, and are just generally fun to play with as well. You could certainly use one to determine whether flat tyres are making your speedometer lie to you. Or, you could dive into this great talk on measurement from [Adam Savage].

Continue reading “Digital Measuring Wheel Is Exactly What It Sounds Like”