The 1987 Videonics Editing System

Videonics: The Dawn Of Home Video Editing, Revisited

Here’s a slice of history that will make any retro-tech fan grin: before TikTok and iMovie, there was a beast called the Videonics DirectED Plus. This early attempt at democratizing video editing saved enthusiasts from six-figure pro setups—but only barely. Popular Science recently brought this retro marvel back to life in a video made using the very system that inspired it. Picture it: 1987, VHS at its peak, where editing your kid’s jazz recital video required not just love but the patience of a saint, eight VCRs, three Videonics units, two camcorders, and enough remotes to operate a space shuttle.

The Videonics DirectED Plus held promise with a twist. It offered a way to bypass monstrous editing rigs, yet mastering its panel of buttons felt like deciphering hieroglyphs. The ‘Getting Started’ tape was the analog era’s lifeline, often missing and leaving owners hunting through second-hand stores, forgotten basements, and enthusiast forums. Fast forward to today, and recreating this rig isn’t just retro fever—it’s a scavenger hunt.

The 1987 Videonics Editing SystemOnce assembled, the system resembled a spaghetti junction of cables and clunky commands. One wrong button press could erase precious minutes of hard-won footage. Still, the determination of DIY pioneers drove the machine’s success, setting the stage for the plug-and-play ease we now take for granted.

These adventures into retro tech remind us of the grit behind today’s seamless content creation. Curious for more? Watch the full journey by Popular Science here.

Continue reading “Videonics: The Dawn Of Home Video Editing, Revisited”

Building A DIY Nipkow Disk Display

Before flat screen technologies took over, we associate TV with the CRT. But there were other display technologies that worked, they just weren’t as practical. One scheme was the Nipkow disk, and [Bitluni] decided to build a working demonstration of how such a system works.

Essentially, there’s a spinning disk with a spiral pattern of holes in it. As the disk spins, a light behind it turns on or off. If you time everything right, you get an image that can move. This particular model uses stepper motors, which is a bit of a modern concession.

The result was actually much better than you might guess, but a far cry from a modern display device, of course. The screen material needed a little tweaking, but even the initial results were very impressive. If this were trying to be practical, it would probably require a bit more work on the light source and screen.

Interestingly, the Nipkow disk arrangement was just as suitable for scanning as displaying. Instead of a light behind the wheel, you simply used a light sensor. Of course, in practice, getting everything synchronized and mass-producing high-resolution sets would have been a tremendous challenge a century ago.

Not that people didn’t try. There were even color systems using mechanical wheels. In the 1930s, people were sure your TV would contain spinning disks.

Continue reading “Building A DIY Nipkow Disk Display”

Capturing Light In A Vacuum: The Magic Of Tube Video Cameras

Cameras are a funny rabbit hole to fall down as a hacker, because we have well over a century of items to pick and choose from, a lot of which can be had for relative pennies. In my case I have more of them than I’d care to mention, mostly film cameras and 8mm movie cameras, but there are one or two that are entirely different. My first interest in electronics came through PAL televisions, so it’s hardly surprising that along the way I’ve also acquired more than one chunky old tube-based video camera. These devices are now long ago supplanted by their solid state replacements, but they retain a fascination for me as the mirror of the CRT-based TV sets I know so well. It’s time for a fascinating descent into the world of analogue video.

Electrons chasing light, chasing electrons

The zig-zag line pattern of a TV scan.
A raster scan pattern. Ian Harvey, Public domain.

The basic mode of operation behind all but some of the very earliest electronic camera tubes is that an electron gun paints its raster of electrons onto a light-sensitive target, and the current flowing through the electron beam varies in proportion to the light at each particular point on the target. This can be used to create a voltage, which when combined with the various sync pulses makes a video signal that would be understood by a monitor. The various different types of tubes have names such as Iconoscope, Emitron, or Vidicon, and while the main differences between those various types of tube lie in the combination of materials and design of their targets. Successive generations of tube made improvements to sensitivity and noise performance, first combining photoemissive layers with electron multiplying layers to amplify the video signal in much the same way as a photomultiplier tube does, and then using photoconductive targets to vary the conductivity of the target depending on the light at a particular point. Continue reading “Capturing Light In A Vacuum: The Magic Of Tube Video Cameras”

2View: The Self-Erasing VHS Tape With Paperclip Hack

The back of the 2View VHS box. The instructions are all in Dutch, as its (sole) launch market. (Credit: Techmoan, YouTube)
The back of the 2View VHS box. The instructions are all in Dutch, as its (sole) launch market. (Credit: Techmoan, YouTube)

Over the decades the video and music industries have tried a wide range of ways to get consumers to buy ‘cheaper’ versions of albums and music, but then limit the playback in some way. Perhaps one of the most fascinating ones is the 2View, as recently featured by [Matt] over at Techmoan on Youtube. This is a VHS tape which works in standard VHS players and offers you all the goodness that VHS offers, like up to 512 lines of PAL video and hard-coded ads and subtitles, but also is restricted to just playing twice. After this second playback and rewinding, the tape self-erases and is blank, leaving you with just an empty VHS tape you can use for your own recordings.

As a form of analog restrictions management (ARM) it’s pretty simple in how it works, with [Matt] taking the now thankfully erased Coyote Ugly tape apart for a demonstration of the inside mechanism. This consists out of effectively just two parts: one plastic, spring-loaded shape that moves against one of the tape spools and follows the amount of tape, meaning minutes watched, and a second arm featuring a permanent magnet that is retained by an inner track inside the first shape until after rewinding twice it is released and ends up against the second spool, erasing the tape until rewound, after which it catches in a neutral position. This then left an erased tape that could be safely recorded on again.

Although cheaper than a comparable VHS tape without this limit, 2View was released in 2001, when in the Netherlands and elsewhere DVDs were demolishing the VHS market. This, combined with the fact that a simple bent paperclip could be stuck inside to retain the erase arm in place to make it a regular VHS tape, meant that it was really a desperate attempt that quickly vanished off the market

Continue reading “2View: The Self-Erasing VHS Tape With Paperclip Hack”

Photo of Ceefax on a CRT television

Ceefax: The Original News On Demand

Long before we had internet newsfeeds or Twitter, Ceefax delivered up-to-the-minute news right to your television screen. Launched by the BBC in 1974, Ceefax was the world’s first teletext service, offering millions of viewers a mix of news, sports, weather, and entertainment on demand. Fast forward 50 years, and the iconic service is being honored with a special exhibition at the Centre for Computing History in Cambridge.

At its peak, Ceefax reached over 22 million users. [Ian Morton-Smith], one of Ceefax’s original journalists, remembers the thrill of breaking stories directly to viewers, bypassing scheduled TV bulletins. The teletext interface, with its limited 80-word entries, taught him to be concise, a skill crucial to news writing even today.

We’ve talked about Ceefax in the past, including in 2022 when we explored a project bringing Ceefax back to life using a Raspberry Pi. Prior to that, we delved into its broader influence on early text-based information systems in a 2021 article.

But Ceefax wasn’t just news—it was a global movement toward interactive media, preceding the internet age. Services like Viditel and the French Minitel carried forward the idea of interactive text and graphics on screen.

Dual-Port RAM For A Simple VGA Card

Making microcontrollers produce video has long been a staple of hardware hacking, but as the resolution goes up, it becomes a struggle for less capable silicon. To get higher resolution VGA from an Arduino, [Marcin Chwedczuk] has produced perhaps the most bulletproof solution, to create dual-port RAM with the help of a static RAM chip and a set of 74-series bus transceivers, and let a hardware VGA interface take care of the display. Yes, it’s not a microcontroller doing VGA, but standalone VGA for microcontrollers.

Dual-port memory is a special type of memory with two interfaces than can independently be used to access the contents. It’s not cheap when bought in integrated form, so seeing someone making a substitute with off-the-shelf parts is certainly worth a second look. The bus transceivers are in effect bus-width latches, and each one hangs on to the state while the RAM chip services each in turn. The video card part is relatively straightforward, a set of 74 chips which produce the timings and step through the addresses, and a shift register to push out simple black or white pixel data as a rudimentary video stream. We remember these types of circuits being used back in the days of home made video terminals, and here in 2024 they still work fine.

The display this thing produces isn’t the most impressive picture, but it is VGA, and it does work. We can see this circuit being of interest to plenty of other projects having less capable processing power, in fact we’d say the challenge should lie in how low you can go if all you need is the capacity to talk 74-series logic levels.

Interested in 74-series VGA cards? This isn’t the first we’ve seen.

If You Give A Dev A Tricked Out Xbox, They’ll Patch Halo 2

[Ryan Miceli] had spent a few years poring over and reverse-engineering Halo 2 when a friend asked for a favor. His friend created an improved Xbox with significant overclocks, RAM upgrades, BIOS hacks, and a processor swap. The goal was simple: patch the hardcoded maximum resolution from 480p to 720p and maybe even 1080p. With double the CPU clock speed but only a 15% overclock on the GPU, [Ryan] got to work.

Step one was to increase the size of the DirectX framebuffers. Increasing the output resolution introduced severe graphical glitches and rendering bugs. The game reuses the framebuffers multiple times as memory views, and each view encodes a header at the top with helpful information like width, height, and tiling. After patching that, [Ryan] had something more legible, but some models weren’t loading (particularly the water in the title screen). The answer was the texture accumulation layer. The Xbox has a hardware limitation of only sampling four textures per shader pass, which means you need a buffer the size of the render resolution to accumulate the textures if you want to sample more than four textures. Trying to boot the game resulted in an out-of-memory crash. The Xbox [Ryan] was working on had been upgraded with an additional 64MB of RAM, but the memory allocator in Halo 2 wasn’t taking advantage of it. Yet.

To see where the memory was going, [Ryan] wrote a new tool called XboxImageGrabber to show where memory was allocated and by whom. Most games make a few substantial initial allocations from the native allocator, then toss it over to a custom allocator tuned for their game. However, the extra 64MB of RAM was in dev consoles and meant as debug RAM, which meant the GPU couldn’t properly access it. Additionally, between the lower 64MB and upper is the Xbox kernel. Now, it became an exercise of patching the allocator to work with two blobs of memory instead of one contiguous one. It also moved runtime data into the upper 64MB while keeping video allocations in the lower. Ultimately, [Ryan] found it easier to patch the kernel to allow memory allocations the GPU could use in the upper 64MB of memory. Running the game at 720p resulted in only a semi-playable framerate, dropping to 10fps in a few scenes.

After some initial tests, [Ryan] concluded that it wasn’t the GPU or the CPU that was the bottleneck but the swap chain. Halo 2 turns VSync on by default, meaning it has to wait until a blank period before swapping between its two framebuffers. A simple tweak is to add a third frame buffer. The average FPS jumped 10%, and the GPU became the next bottleneck to tweak. With a light GPU overclock, the game was getting very close to 30fps. Luckily for [Ryan], no BIOS tweak was needed as the GPU clock hardware can be mapped and tweaked as an MMIO. After reverse engineering, a debugging feature to visual cache evictions, [Ryan] tuned the texture and geometry cache to minimize pop-ins that the original game was infamous for.

Overall, it’s an incredible hack with months of hard work behind it. The code for the patch is on Github, and there’s a video after the break comparing the patched and unpatched games. If you still need more Halo in your life, why not make yourself a realistic battle rifle from the game?

Continue reading “If You Give A Dev A Tricked Out Xbox, They’ll Patch Halo 2