Three-Conductor Pivot For E-Textiles Is Better Than Wires

Pivots for e-textiles can seem like a trivial problem. After all, wires and fabrics bend and flex just fine. However, things that are worn on a body can have trickier needs. Snap connectors are the usual way to get both an electrical connection and a pivot point, but they provide only a single conductor. When [KOBAKANT] had a need for a pivoting connection with three electrical conductors, they came up with a design that did exactly that by using a flexible circuit board integrated to a single button snap.

This interesting design is part of a solution to a specific requirement, which is to accurately measure hand movements. The photo shows two strips connected together, which pivot as one. The metal disk near the center is a magnet, and underneath it is a Hall effect sensor. When the wrist bends, the magnet is moved nearer or further from the sensor and the unit flexes and pivots smoothly in response. The brief videos embedded below make it clear how the whole thing works.

Continue reading “Three-Conductor Pivot For E-Textiles Is Better Than Wires”

Hackaday Superconference: Estefannie’s Daft Punk Helmet

There’s no single formula for success, but if we’ve learned anything over the years of covering cons, contests, and hackathons, it’s that, just like in geology, pressure can create diamonds. Give yourself an impossible deadline with high stakes, and chances are good that something interesting will result. That’s what Estefannie from the YouTube channel “Estefannie Explains It All” did when Bay Area Maker Faire was rolling around last year, and she stopped by the 2018 Hackaday Superconference to talk about the interactive Daft Punk helmet that came out of it.

It’s a rapid-fire tour of Estefannie’s remarkably polished replica of the helmet worn by Guy-Manuel de Homem-Christo, one half of the French electronic music duo Daft Punk. Her quick talk, video of which is below, gives an overview of its features, but we miss the interesting backstory. For that, the second video serves as a kickoff to a whirlwind month of hacking that literally started from nothing.

You’ll Learn it Along the Way

Before deciding to make the helmet, Estefannie had zero experience in the usual tools of the trade. With only 28 days to complete everything, she had to: convert her living room into a workshop; learn how to 3D print; print 58 separate helmet parts, including a mold for thermoforming the visor; teach herself how to thermoform after building the tools to do so; assemble and finish all the parts; and finally, install the electronics that are the hallmark of Daft Punk’s headgear.

The three videos in her series are worth watching to see what she put herself through. Estefannie’s learning curve was considerable, and there were times when nothing seemed to work. The thermoforming was particularly troublesome — first too much heat, then not enough, then not enough vacuum (pretty common hurdles from other thermoforming projects we’ve seen). But the finished visor was nearly perfect, even if it took two attempts to tint.

We have to say that at first, some of her wounds seemed self-inflicted, especially seeing the amount of work she put into the helmet’s finish. But she wanted it to be perfect, and the extra care in filling, sanding, priming, and painting the printed parts really paid off in the end. It was down to the wire when BAMF rolled around, with last minute assembly left to the morning of the Faire in the hotel room, but that always seems to be the way with these kinds of projects.

In the end, the helmet came out great, and we’re glad the run-up to the Superconference wasn’t nearly as stressful for Estefannie — or so we assume. And now that she has all these great new skills and tools, we’re looking forward to her next build.

Continue reading “Hackaday Superconference: Estefannie’s Daft Punk Helmet”

Cyberpunk Jacket Is The Garment Of Choice For The Streets Of 2019

Fans of science fiction and related genres have always been disappointed by real life. The future holds so much promise on paper, yet millions were disappointed upon reaching 2015 to find that hoverboard technology still eluded us. It’s not all bad, though – [abetusk] has developed a cyberpunk jacket so you can live out your grungy hacker fantasies in real life.

The effect is achieved with specially designed jacket patches. Nylon fabric is lasercut with artwork or lettering, and then placed over an electroluminescent panel. The fabric acts as a mask and is glued onto the EL panel, and the assembly is then attached to the back of the jacket with velcro.

It’s a build that focuses on more than just a cool visual effect. The attention to detail pays off in robustness and usability – wires are neatly fed through the lining of the jacket, and special strain relief devices are used to avoid wires breaking off the EL panels. The extra effort means this is a jacket that can withstand real-world use, rather than falling apart in the middle of a posed photo shoot.

Everything is well documented, from artwork creation to final assembly, so there’s no reason you can’t replicate this at home – and the final results are stunning. Our take is that electroluminescent technology is the way to go for retro and cyberpunk looks, but LEDs can be fun too – like in this high-powered Burning Man build.

Continue reading “Cyberpunk Jacket Is The Garment Of Choice For The Streets Of 2019”

You Won’t Hear This Word On The Street

The simplest answer to a problem is not necessarily always the best answer. If you ask the question, “How do I get a voice assistance to work on a crowded subway car?”, the simplest answer is to shout into a microphone but we don’t want to ask Siri to put toilet paper on the shopping list in front of fellow passengers at the top of our lungs. This is “not a technical issue but a mental issue” according to [Masaaki Fukumoto], lead researcher at Microsoft in “hardware and devices” and “human-computer interaction.” SilentVoice was demonstrated in Berlin at the ACM Symposium on User Interface Software and Technology which showed a live transcription of nearly silent speech. A short demonstration can be found below the break.

SilentVoice relies on a different way of speaking and a different way of picking up that sound. Instead of traditional dictation in which we exhale while facing a microphone, it is necessary to place the microphone less than two millimeters from the mouth, usually against the lips, and use ingressive speech which is just whispering while inhaling. The advantage of ingressive over egressive speech is that without air being blown over the microphone, the popping of air gusts is eliminated. With practice, it is as efficient as normal speaking but that practice will probably involve a few dizzy spells from inhaling more than necessary.

Continue reading “You Won’t Hear This Word On The Street”

Glasses Frames Crafted Out Of Wood

Most glasses and sunglasses on the market make use of metal or plastic frames. It’s relatively easy to create all manner of interesting frame geometries, tolerances can be easily controlled for fitting optical elements, and they’re robust materials that can withstand daily use. Wood falls short on all of these measures, but that doesn’t mean you can’t use it to make a beautiful pair of glasses.

ZYLO is a company making wooden eyewear, and this video from [Paide] shows the build process in detail. Modern tools are used to make things as efficient as possible. Parts are lasercut and engraved to form the main part of the frames as well as the temples (the arms that sit over the ears to hold them on your face). A special jig is used to impart a curve on the laminated wood parts before further assembly is undertaken. Metal pre-fabricated hinges and screws are used to bolt everything together like most other modern sunglasses, but there’s significant hand finishing involved, including delicate inlays and highlighting logo features.

In contrast, Manuel Arroyave works very differently in the creation of his Cedoro glasses. Sheets are first laminated together, before the shape is roughed out by a special horizontal axis milling setup. Even small details like the hinges are delicately hand-crafted out of wood and fitted with tiny wooden dowels.

It goes to show that there’s always more than one way to get a job done. We’re tempted to break out the laser cutter and get started on some custom shades ourselves. Perhaps though, you’re too tired to put your sunglasses on by yourself? Nevermind, there’s a solution for that, too. Video after the break.

Continue reading “Glasses Frames Crafted Out Of Wood”

Tech Tattoos Trace Two Dimensions

Flexible circuit boards bend as you might expect from a playing card, while skin stretches more like knit fabric. The rules for making circuit boards and temporary tattoos therefore need to be different. Not just temporary tattoos, there are also circuits that reside on the skin so no unregulated heat traces, please. In addition to flexing and stretching, these tattoos can be applied to uneven surfaces and remain intact. Circuits could be added to the outside of projects or use the structure as the board to reduce weight and size. Both are possible with the research from Carnegie Mellon’s Soft Machines Lab and the Institute of Systems and Robotics at the University of Coimbra.

These circuits are an improvement over the existing method which relies on cropping away metal foil with a magnifying glass, tweezers and a steady hand. Instead, silver particles are printed with an inkjet printer before the traces are coated in eutectic gallium indium which is liquid metal at room temperature. If we were to oversimplify, we might describe it as similar to a non-toxic equivalent of mercury that we have also seen used in DIY OLEDs. This is a development likely to be interesting in a range of fields from medicine to cosplay.

Continue reading “Tech Tattoos Trace Two Dimensions”

Homemade Daft Punk Helmet

You may not be French, and you may not have had a series of hit records, but you can still have the blinky LED helmet, thanks to this build from [Electronoobs]. They have put together a neat Daft Punk helmet built from 3D printed parts, an Arduino, a Bluetooth module, a string of WS2812 addressable LEDs and a simple app. The helmet itself is 3D printed, and the Arduino, Bluetooth, and battery are mounted in the chin. The LED panel is a series of WS2812 LED light strips wired together in series. The whole thing is controlled over a Bluetooth connection to an Android app that was built with the MIT App Inventor.

It’s a nice, simple build, but as we’ve discussed before choosing diffusers is hard. We’re not sure if a thicker panel covering the LED strips, or flipping the LEDs over and adding a reflective layer would be the right moves to improve upon the diffused look. Either way, it’s a neat place to start with your own build and a good way to learn about how to have fun with LED strips.

Continue reading “Homemade Daft Punk Helmet”