2025 Component Abuse Challenge: The Sweet Sound Of A Choking Transformer

The Component Abuse Challenge is dragging all sorts of old, half-forgotten hacks out of the woodwork, but this has got to be the most vintage: [KenS] started using a transformer as a variable choke on his speakers 55 years ago.

The hack is pretty bone-dead simple. A choke is an inductor in an audio (or any other) circuit designed to, well, choke off higher-than-desired frequencies. We featured a deep dive a few years back if you’re interested. An inductor is a coil of wire, usually (but not necessarily) wound around a core of iron or ferrite. A transformer? Well, that’s also a coil of wire around a core… plus an extra coil of wire. So when [KenS], back in his salad days, had a tweeter that a was a little too tweety, and no proper choke, he grabbed a transformer instead.

This is where inspiration hit: sure, if you leave the second winding open, the transformer acts like a standard choke. What happens if you short that second winding? Well, you dampen the response of the first winding, and it stops choking, to the point that it acts more like a straight wire. What happens if you don’t short the second winding, but don’t leave it wide open? [KenS] stuck a potentiometer on there, and found it made a handy-dandy variable choke with which to perfectly tune the tone response of his speakers. Changing the resistance changes the rate at which high frequencies are choked off, allowing [KenS] to get the perfect frequency response with which to rock out to Simon & Garfunkel, The Carpenters and The Guess Who. (According to the Billboard Top 100 for 1970, those are who you’d be listening to if you had conventional tastes.)

While we can’t say the transformer is really being tortured in this unusual mode, it’s certainly not how it was designed, so would qualify for the “Junk Box Substitutions” category of the Component Abuse Challenge. If you’ve made similar substitutions you’d like to share, don’t wait another 55 years to write them up– the contest closes November 11th.

Transformer image: Hannes Grobe, CC BY-SA 4.0.

2025 Component Abuse Challenge: Load Cell Anemometer

When you think anemometer, you probably don’t think “load cell” — but (statistically speaking) you probably don’t live in Hurricane Country, which is hard on wind-speed-measuring-whirligigs. When [BLANCHARD Jordan] got tired of replacing professionally-made meteorological eggbeaters, he decided he needed something without moving parts. Whatever he came up with would probably qualify for the Component Abuse Challenge, but the choice of load cells of all things to measure wind speed? Yeah, that’s not what the manufacturer intended them for.

In retrospect, it’s actually a fairly obvious solution: take a plate of known area, and you’re going to get a specific force at a given air speed. The math isn’t hard, it’s just not how we normally see this particular measurement done. Of course, a single plate would have to be pivoted to face the wind for an accurate reading, which means moving parts– something specifically excluded from the design brief. [Jordan] instead uses a pair of load cells, mounted 90 degrees to one another, for his anemometer. One measures the force in a north-south axis, and the other east-west, allowing him to easily calculate both wind speed and direction. In theory, that is. Unfortunately, he vibe coded the math with ChatGPT, and it looks like it doesn’t track direction all that well. The vibe code runs on an ESP32 is responsible for polling data, tossing outliers, and zeroing out the load cells on the regular.

Continue reading “2025 Component Abuse Challenge: Load Cell Anemometer”

2025 Hackaday Supercon: More Wonderful Speakers

Supercon is just around the corner, and we’re absolutely thrilled to announce the second half of our slate! Supercon will sell out so get your tickets now before it’s too late. If you’re on the fence, we hope this pushes you over the line. And if it doesn’t, stay tuned — we’ve still got to tell you everything about the badge and the fantastic keynote speaker lineup.

(What? More than one keynote speaker? Unheard of!)

And as if that weren’t enough, there’s delicious food, great live music, hot soldering irons, and an absolutely fantastic crowd of the Hackaday faithful, and hopefully a bunch of new folks too. If you’re a Supercon fan, we’re looking forward to seeing you again, and if it’s your first time, we’ll be sure to make you feel welcome. Continue reading “2025 Hackaday Supercon: More Wonderful Speakers”

Can A Coin Cell Make 27 Volts?

We have all no doubt at some point released the magic smoke from a piece of electronics, it’s part of what we do. But sometimes it’s a piece of electronics we’re not quite ready to let go, and something has to be fixed. [Chris Greening] had a board just like that, a 27 volt generator from an LCD panel, and he crafted a new circuit for it.

The original circuit, which we think he may have drawn incorrectly, uses a small boost converter IC with the expected inductor and diode. His replacement is the tried and tested joule thief, but with a much higher base resistor than its normal application in simply maintaining a battery voltage. It sucks 10 mA from the battery and is regulated with a Zener diode, but there’s still further room for improvement. Adding an extra transistor and using the Zener as a feedback component causes the oscillator to shut off as the voltage increases, something which in this application is fine.

It’s interesting to see a joule thief pushed into a higher voltage application like this, but we sense perhaps it could be made more efficient by seeking out an equivalent to the boost converter chip. Or even a flyback converter.

2G Gone? Bring It Back Yourself!

Some parts of the world still have ample 2G coverage; for those of in North America, 2G is long gone and 3G has either faded into dusk or beginning its sunset. The legendary [dosdude1] shows us it need not be so, however: Building a Custom 2G GSM Cellular Base Station is not out of reach, if you are willing to pay for it. His latest videos show us how.

Before you start worrying about the FCC or its equivalents, the power here is low enough not to penetrate [dosdude]’s walls, but technically this does rely in flying under the radar. The key component is a Nuand BladeRF x40 full-duplex Software Defined Radio, which is a lovely bit of open-source hardware, but not exactly cheap. Aside from that, all you need is a half-decent PC (it at least needs USB-3.0 to communicate with the SDR, the “YateBTS”  software (which [dosdude1] promises to provide a setup guide for in a subsequent video) and a sim card reader. Plus some old phones, of course, which is rather the whole point of this exercise.

The 2G sunset, especially when followed by 3G, wiped out whole generations of handhelds — devices with unique industrial design and forgotten internet protocols that are worth remembering and keeping alive. By the end of the video, he has his own little network, with the phones able to call and text one another on the numbers he set up, and even (slowly) access the internet through the miniPC’s network connection.

Unlike most of the hacks we’ve featured from [dosdude1], you won’t even need a soldering iron, never mind a reflow oven for BGA. 

Continue reading “2G Gone? Bring It Back Yourself!”

ESP32 Decodes S/PDIF Like A Boss (Or Any Regular Piece Of Hi-Fi Equipment)

S/PDIF has been around for a long time; it’s still a really great way to send streams of digital audio from device A to device B. [Nathan Ladwig] has got the ESP32 decoding SPDIF quite effectively, using an onboard peripheral outside its traditional remit.

On the ESP32, the Remote Control Transceiver (RMT) peripheral was intended for use with infrared transceivers—think TV remotes and the like. However, this peripheral is actually quite flexible, and can be used for sending and receiving a range of different signals. [Nathan] was able to get it to work with S/PDIF quite effectively. Notably, it has no defined bitrate, which allows it to work with signals of different sample rates quite easily. Instead, it uses biphase mark code to send data. With one or two transitions for each transmitted bit, it’s possible to capture the timing and determine the correct clock from the signal itself.

[Nathan] achieved this feat as part of his work to create an ESP32-based RTP streaming device. The project allows an ESP32 to work as a USB audio device or take an S/PDIF signal as input, and then transmitting that audio stream over RTP to a receiver which delivers the audio at the other end via USB audio or as an SPDIF output. It’s a nifty project that has applications for anyone that regularly finds themselves needing to get digital audio from once place to another. It can also run a simple visualizer, too, with some attached LEDs.

It’s not the first time we’ve seen S/PDIF decoded on a microcontroller; it’s quite achievable if you know what you’re doing. Meanwhile, if you’re cooking up your own digital audio hacks, we’d love to hear about it. Digitally, of course, because we don’t accept analog phone calls here at Hackaday. Video after the break.

Continue reading “ESP32 Decodes S/PDIF Like A Boss (Or Any Regular Piece Of Hi-Fi Equipment)”

Hackaday Links Column Banner

Hackaday Links: October 5, 2025

What the Flock? It’s probably just some quirk of The Almighty Algorithm, but ever since we featured a story on Flock’s crime-fighting drones last week, we’ve been flooded with other stories about the company, some of which aren’t very flattering. The first thing that we were pushed was this handy interactive map of the company’s network of automatic license plate readers. We had no idea how extensive the network was, and while our location is relatively free from these devices, at least ones operated on behalf of state, county, or local law enforcement, we did learn to our dismay that our local Lowe’s saw fit to install three of these cameras on the entrances to their parking lot. Not wishing to have our coming and goings documented, we’ll be taking our home improvement dollars elsewhere for now.

Continue reading “Hackaday Links: October 5, 2025”