Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The Curvy Centerfold

What do you get when you combine a Raspberry Pi 4B, a Kaypro keyboard, and a 9″ Apple ], you get the coolest AVR development workstation I’ve seen in a while.

A Raspberry Pi-based AVR workstation that uses a Kaypro keyboard and 9" monochrome Apple ][c display.
Image by [John Anderson] via Hackaday.IO
As you may have guessed, I really dig the looks of this thing. The paint job on the display is great, but the stripes on the keyboard and badging on are on another level. Be sure to check out the entire gallery on this one.

About that keyboard — [John] started this project with two incomplete keyboards that each had a couple of broken switches. Since the two keyboards were compliments of each other parts-wise, they made a great pair, and [John] only had to swap out three switches to get it up and clacking.

In order to make it work with the Pi, [John] wrote a user-mode serial driver that uses the uinput kernel module to inject key events to the kernel. But he didn’t stop there.

Although the Pi supports composite video out, the OS doesn’t provide any way to turn off the chroma color signal that’s modulated on top of the basic monochrome NTSC signal, which makes the picture look terrible. To fix that, he wrote a command-line app that sets up the video controller to properly display a monochrome NTSC signal. Happy AVRing on your amazing setup, [John]! Continue reading “Keebin’ With Kristina: The One With The Curvy Centerfold”

Tiny arcade machines on a tabletop

Tiny PONG, Big Ambitions: World’s Smallest Arcade

London, Ontario college student [Victoria Korhonen] has captured the attention of tech enthusiasts and miniaturization lovers with her creation of what might be the world’s smallest arcade machine. Standing just 64 mm tall, 26 mm wide, and 30 mm deep, this machine is a scaled-down marvel playing the classic Atari game PONG. While the record isn’t yet official—it takes about three months for Guinness to certify—it’s clear [Korhonen]’s creation embodies ingenuity and dedication.

[Korhonen], an electromechanical engineering student, took six months to design and build this micro arcade. Inspired by records within reach, she aimed to outdo the previous tiniest arcade machine by shaving off just a few millimeters During the project she faced repeated failures, but viewed each iteration as a step towards success. Her miniature machine isn’t just a gimmick; it’s fully functional, with every component—from paddle mechanics to coding—developed from scratch.

[Korhonen] is already eyeing new projects, including creating the smallest humanoid robot. She also plans to integrate her electromechanical expertise into her family’s escape room business. Her journey aligns with other hobbyist projects pushing the limits of miniaturization, such as this credit card-sized Tetris clone or [Aliaksei Zholner]’s paper micro engines.

Atari’s Pac-Man Flop: How A Classic Went Off-Course

For fans of retro games, Pac-Man is nothing short of iconic—a game so loved it’s been ported to nearly every console imaginable. But the Atari 2600 version, released in 1982, left players scratching their heads – as laid out in a video by [Almost Something]. Atari had licensed Pac-Man to ride the wave of its arcade success, but the home version, programmed solely by [Todd Fry], missed the mark, turning an arcade icon into a surprising lesson in over-ambitious marketing.

Despite the hype, [Fry] faced an almost impossible task: translating Pac-Man’s detailed graphics and complex gameplay to the Atari’s limited 4 K cartridge with only 128 bytes of RAM. Atari’s strict limitations on black backgrounds and its choice to cut costs by sticking with a 4 K cartridge left the game barely recognizable. The famous pellet-chomping maze became simpler, colors were changed, and the iconic ghosts—reduced to single colors—flickered constantly. And then, Atari went all in, producing twelve million copies, betting on the success of universal appeal. In a twist, Pac-Man did sell in record numbers (over seven million copies) but still fell short of Atari’s expectations, leaving millions of unsold cartridges eventually dumped in a New Mexico landfill.

This debacle even kind of marked Atari’s 1983 decline. Still, Pac-Man survived the hiccup, evolving and outlasting its flawed adaptation on the 2600. If you’re interested in learning more about the ins and outs of game ports, check out the fantastic talk [Bob Hickman] gave during Supercon 2023.

Continue reading “Atari’s Pac-Man Flop: How A Classic Went Off-Course”

Behold A First-Person 3D Maze, Vintage Atari Style

[Joe Musashi] was inspired by discussions about 3D engines and decided to create a first-person 3D maze of his own. The really neat part? It could have been done on vintage Atari hardware. Well, mostly.

He does admit he had to do a little cheating to make this work; he relies on code for the ARM processor in the modern Atari VCS do the ray casting work, and the 6507 chip just handles the display kernel. Still, running his demo on a vintage Atari 2600 console could be possible, but would definitely require a Melody or Harmony cartridge, which are special reprogrammable cartridges popular for development and homebrew.

Ray casting is a conceptually simple method of generating a 3D view from given perspective, and here’s a tutorial that will tell you all you need to know about how it works, and how to implement your own.

[Joe]’s demo is just a navigable 3D maze rather than a game, but it’s pretty wild to see what could in theory have run on such an old platform, even if a few modern cheats are needed to pull it off. And if you agree that it’s neat, then hold onto your hats because a full 3D ray casting game — complete with a micro physics engine — was perfectly doable on the Commodore PET, which even had the additional limitation of a monochrome character-based display.

New Pens For Old Plotters

Finding consumables is an ever-present problem facing anyone working with old computer hardware. Many of these devices ceased manufacture decades ago and what old stock remains is invariably degraded by time. [Retrohax] has encountered it with the pens for an Atari plotter, a machine that uses an ALPS mechanism that appears in more than one 1980s machine. The original pens had dried out beyond the ability to refill, so he takes us through the process of finding replacements.

Sadly there are no equivalent modern pens ripe for modification, so whatever replacement he used would have to involve a little lateral thinking. He thought salvation was at hand in the form of multicolor ballpoint refills of the type where the ink is in an easily cuttable plastic tube. [Retrohax] and was able to make a 3D-printed holder for a cut-down ballpoint refill. Sadly the pressure required for a good line from a ballpoint was much higher than the original pens, so he was back to square one. Then he happened upon gel pens and tried the same trick with a gel pen refill. This gave instant success and should provide a valid technique for more than just this ALPS mechanism.

If you haven’t got a classic plotter to hand, never fear. You can have a go at making your own.

MovieCart Plays Videos On The Atari 2600

The original Xbox and PlayStation 2 both let you watch DVD movies in addition to playing games. Seldom few consoles before or since offered much in the way of media, least of all the Atari 2600, which was too weedy to even imagine such feats. And yet, as covered by TechEBlog[Lodef Mode] built a cartridge that lets it play video.

It’s pretty poor quality video, but it is video! The MovieCart, as it is known, is able to play footage at 80×192 resolution, with a color palette limited by the capabilities of the Atari 2600 hardware. It’s not some sneaky video pass-through, either—the Atari really is processing the frames.

To play a video using the MovieCart, you first have to prepare it using a special utility that converts video into the right format for the cart. The generated video file is then loaded on a microSD card which is then inserted into the MovieCart. All you then have to do is put the MovieCart into the Atari’s cartridge slot and boot it up.  Sound is present too, in a pleasingly lo-fi quality. Control of picture brightness and sound volume is via joystick. You could genuinely watch a movie this way if you really wanted to. I’d put on House of Gucci.

Thanks to the prodigious storage available on microSD cards, you can actually play a whole feature length movie on the hardware this way. You can order a MovieCart of your very own from Tindie, and it even comes with a public domain copy of Night of the Living Dead preloaded on a microSD card.

We don’t see a big market for Atari 2600 movies, but it’s neat to see it done. Somehow it reminds us of the hacked HitClips carts from a while ago. Video after the break.

Continue reading “MovieCart Plays Videos On The Atari 2600”

Atari Gets Semi-Modern Video Output

The Atari 2600 is a historical enigma in many ways. On one hand, it was the most popular gaming console of its era, but it was also at the center of the video game crash of 1983 due to the poor quality of its games at the time. It is a fascinating system in many ways that are still relevant today, especially when it comes to pushing hardware much farther than it was designed to go. [nicole] brings us a project that overcomes some of the limitations in its hardware to provide a more modern video output.

At the heart of the Atari is a custom chip called teh Television Interface Adapter (TIA) that generates the console’s video signal as well as handling controller information and a few other tasks. It was designed at a time where memory was expensive, and essentially trades programmer effort to reduce memory requirements. Interestingly, it separates luminance and chrominance information much like S-video does, so that’s where [nicole] focused their efforts. Thanks to some help from an adapter board, the video signals can be intercepted and reprocessed for the S-video standard instead of using RF modulation to send video data out, although this does involve some soldering and modifying of the original Atari hardware. In [nicole]’s case this was a little more involved due to the differences of the 2600jr compared to more standard versions of the console.

While S-video isn’t modern in the strictest sense, as a standard from 1987 it is a huge step forward compared to the available video output methods available in the 1970s when the 2600 was first produced. Plenty of older consoles and other hardware like VCRs and the like used S-video, so if you have a retro gaming setup complete with a CRT you might want to take a look at this 12-input A/V switch to keep everything managed.