Photo of Ceefax on a CRT television

Ceefax: The Original News On Demand

Long before we had internet newsfeeds or Twitter, Ceefax delivered up-to-the-minute news right to your television screen. Launched by the BBC in 1974, Ceefax was the world’s first teletext service, offering millions of viewers a mix of news, sports, weather, and entertainment on demand. Fast forward 50 years, and the iconic service is being honored with a special exhibition at the Centre for Computing History in Cambridge.

At its peak, Ceefax reached over 22 million users. [Ian Morton-Smith], one of Ceefax’s original journalists, remembers the thrill of breaking stories directly to viewers, bypassing scheduled TV bulletins. The teletext interface, with its limited 80-word entries, taught him to be concise, a skill crucial to news writing even today.

We’ve talked about Ceefax in the past, including in 2022 when we explored a project bringing Ceefax back to life using a Raspberry Pi. Prior to that, we delved into its broader influence on early text-based information systems in a 2021 article.

But Ceefax wasn’t just news—it was a global movement toward interactive media, preceding the internet age. Services like Viditel and the French Minitel carried forward the idea of interactive text and graphics on screen.

BBC Basic Is Back In A Big Way

The BBC has a long history of teaching the world about computers. The broadcaster’s name was proudly displayed on the BBC Micro, and BBC Basic was the programming language developed especially for that computer. Now, BBC Basic is back and running on a whole mess of modern platforms.

BBC Basic for SDL 2.0 will run on Windows, MacOS, x86 Linux, and even Raspberry Pi OS, Android, and iOS. Desktop versions of the programming environment feature a BASIC editor that has syntax coloring for ease of use, along with luxury features like search and replace that weren’t always available at the dawn of the microcomputer era. Meanwhile, the smartphone versions feature a simplified interface designed to work better in a touchscreen environment.

It’s weird to see, but BBC Basic can actually do some interesting stuff given the power of modern hardware. It can address up to 256 MB of memory, and work with far more advanced graphical assets than would ever have been possible on the original BBC Micro. If you honed your programming skills on that old metal, you might be impressed with what they can achieve with BBC Basic in a new, more powerful context.

If you’re passionate about the BBC and its history with computers, we’ve talked plenty about the BBC Micro in the past, too.

[Thanks to Stephen Walters for the tip!]

Retrotechtacular: Studio Camera Operation, The BBC Way

If you ever thought that being a television camera operator was a simple job, this BBC training film on studio camera operations will quickly disabuse you of that notion.

The first thing that strikes you upon watching this 1982 gem is just how physical a job it is to stand behind a studio camera. Part of the physicality came from the sheer size of the gear being used. Not only were cameras of that vintage still largely tube-based and therefore huge — the EMI-2001 shown has four plumbicon image tubes along with tube amplifiers and weighed in at over 100 kg — but the pedestal upon which it sat was a beast as well. All told, a camera rig like that could come in at over 300 kg, and dragging something like that around a studio floor all day under hot lights had to be hard. It was a full-body workout, too; one needed a lot of upper-body strength to move the camera up and down against the hydropneumatic pedestal cylinder, and every day was leg day when you had to overcome all that inertia and get the camera moving to your next mark.

Operating a beast like this was not just about the bull work, though. There was a lot of fine motor control needed too, especially with focus pulling. The video goes into a lot of detail on maintaining a smooth focus while zooming or dollying, and shows just how bad it can look when the operator is inexperienced or not paying attention. Luckily, our hero Allan is killing it, and the results will look familiar to anyone who’s ever seen any BBC from the era, from Dr. Who to I, Claudius. Shows like these all had a distinctive “Beeb-ish” look to them, due in large part to the training their camera operators received with productions like this.

There’s a lot on offer here aside from the mechanical skills of camera operation, of course. Framing and composing shots are emphasized, as are the tricks to making it all look smooth and professional. There are a lot of technical details buried in the video too, particularly about the pedestal and how it works. There are also two follow-up training videos, one that focuses on the camera skills needed to shoot an interview program, and one that adds in the complications that arise when the on-air talent is actually moving. Watch all three and you’ll be well on your way to running a camera for the BBC — at least in 1982.

Continue reading “Retrotechtacular: Studio Camera Operation, The BBC Way”

Radio Apocalypse: The BBC Radio Program That Could(n’t) Have Started WWIII

Here’s a question for you: if you’re the commander of a submarine full of nuclear missiles, how can you be sure what not receiving a launch order really means? If could — and probably does — mean that everything is hunky dory on land, and there’s no need to pull the trigger. Or, could radio silence mean that the party already kicked off, and there’s nobody left to give the order to retaliate? What do you do then?

One popular rumor — or “rumour,” given the context — in the UK holds that BBC Radio 4, or the lack thereof, is sort of a “deadman’s switch” for the Royal Navy’s ballistic missile subs. [Lewis (M3HHY)], aka Ringway Manchester on YouTube, addresses this in the video below, and spoiler alert: it’s probably not true.

Continue reading “Radio Apocalypse: The BBC Radio Program That Could(n’t) Have Started WWIII”

BBC Master 128 Revealed

[Adrian] comments that the BBC Master 128 is a rare 8-bit computer, and we agree — we couldn’t remember hearing about that particular machine, although the BBC series is quite familiar. The machine has a whopping 128 K of RAM, quite a bit for those days. It also had a 6502 variant known as the 65C12, which has an extra pin compared to a 6502 and doesn’t use the same clock arrangement. A viewer sent him one of these machines, which apparently was used in the BBC studios. You can see this rare beauty in the video below.

The computer has a very nice-looking keyboard that includes a number pad. There are also expansion ports for printers and floppy disk drives. It has some similarities to a standard BBC computer but has a number of differences externally and internally.

Of course, we were waiting for the teardown about 15 minutes in. There were some corroded batteries but luckily, they didn’t do much damage. The power supply had a burned smell. Cracking it open for inspection was a good time to convert the power supply to run on 120 V, too.

After some power supply repair, it was time to power the machine up. The results were not half bad. It started up with a cryptic error message: “This is not a language.” Better than a dead screen. The keyboard wasn’t totally working, though. A bit of internet searching found that the error happens when the battery dies and the machine loses its configuration.

More walkthroughs will take a bit more work on the keyboard. But we were impressed it came up as far as it did, and we look forward to a future installment where the machine fully starts up.

[Adrian] mentioned the co-processor slot accepting a Raspberry Pi, something we’ve talked about before. Or, add an FPGA and make the plucky computer think it is a PDP/11.

Continue reading “BBC Master 128 Revealed”

BBC World Service Turns 90

If you’ve ever owned a shortwave radio, you’ve probably listened at least a little to the BBC World Service. After all, they are a major broadcasting force, and with the British Empire or the Commonwealth spanning the globe, they probably had a transmitter close to your backyard. Recently, the BBC had a documentary about their early years of shortwave broadcasting. It is amazing both because it started so simply and when you think how far communications have progressed in just a scant 100 years.

Today, the BBC World Service broadcasts in over 40 languages distributing content via radio, TV, satellite, and the Internet. Hard to imagine it started with four people who were authorized to spend 10 pounds a week.

Continue reading “BBC World Service Turns 90”

How The BBC (Still) Sends Audio To Transmitter Sites

Running a radio station is, on the face of it, a straightforward technical challenge. Build a studio, hook it up to a transmitter, and you’re good to go. But what happens when your station is not a single Rebel Radio-style hilltop installation, but a national chain of transmitter sites fed from a variety of city-based studios? This is the problem facing the BBC with their national UK FM transmitter chain, and since the 1980s it has been fed by a series of NICAM digital data streams. We mentioned back in 2016 how the ageing equipment had been replaced with a modern FPGA-based implementation without any listeners noticing, and now thanks to [Matt Millman], we have a chance to see a teardown of the original 1980s units. The tech is relatively easy to understand from a 2020s perspective, but it still contains a few surprises.

In each studio or transmitter site would have been a 19″ rack containing one of these units — a card frame with a collection of encoder or decoder cards. These are all custom-made by the BBC’s engineering department to a very high standard, and use period parts such as the familiar Z80 microprocessor and some Philips digital audio chips, which followers of high-end consumer audio may recognize. As you’d expect for a mission critical device, many of the functions are duplicated for redundancy, with their outputs compared to give warning of failures.

The surprise comes in the NICAM encoder and decoder — it’s a custom LSI chip made exclusively for the BBC. This indicates the budget available to the national broadcaster, and given that these units have in some cases been working for over 35 years, we’re guessing that the license payers got their money’s worth.

You can read about the original switch-over in 2016, and a little more about NICAM, too.