Mycelia + Sawdust = House?

Take a guess. What is the featured picture for this article? If you’re channeling your inner Google image recognition, you might say: “Best guess for this image: rock.” But, like Google, you’d be wrong. Instead, what you see are bricks made out of fungi obtained from tissues of mycelia.

By taking fungi obtained from tissues of mycelia and storing them in a jar filled with a growth medium (usually sawdust), MycoWorks is creating all sorts of materials with exciting properties. In just three to seven days, the fungi and sawdust mixture expands and forms into clumps of material, which are then used to create products like handbags, purses, bricks, you name it. According to co-founder Phil Ross, “production of this material is similar to making ravioli from scratch, and the final product is more resilient than concrete.”

The resulting materials are buoyant, self-extinguishing and stress dissipating. Moreover, the bricks are alive up until they are put in a kiln. This means bricks that are placed next to each other will grow together, effectively enabling a structure to be made out of just brick, no mortar. And, while they’re not 3D printed, houses made in this fashion have great potential. If these cool new materials have got you excited, and you want to get cozy with the fungus among us, why not go all out with an automated mushroom cultivator?

Video after the break.

Continue reading “Mycelia + Sawdust = House?”

Replacing The IPhone 6 Button Bricks The Phone

News comes from The Guardian that the iPhone 6 will break because of software updates due to non-authorized hardware replacements. Several thousand iPhone 6 users are claiming their phones have been bricked thanks to software updates if the home button – and the integrated TouchID fingerprint sensor – were replaced by non-Apple technicians.

For the last few iPhone generations, the TouchID fingerprint sensor has been integrated into the home button of every iPhone. This fingerprint sensor provides an additional layer of security for the iPhone, and like everything on smartphones, there is a thriving market of companies who will fix broken phones. If you walk into an Apple store, replacing the TouchID sensor will cost about $300. This part is available on Amazon for about $10, and anyone with a pentalobe screwdriver, spudger, and fine motor control can easily replace it. Doing so, however, will eventually brick the phone, as software updates render the device inoperable if the TouchID sensor is not authorized by Apple.

According to an Apple spokeswoman, the reason for the error 53 is because the fingerprint data is uniquely paired to the touch ID sensor found in the home button. If the TouchID sensor was substituted with a malicious TouchID sensor, complete and total access to the phone would be easy, providing a forehead-slapping security hole. Error 53 is just Apple’s way of detecting devices that were tampered with.

In fairness to Apple, not checking the authenticity of the touch ID would mean a huge security hole; if fingerprint data is the only thing keeping evil balaclava-wearing hackers out of your phone, simply replacing this sensor would grant them access. While this line of reasoning is valid, it’s also incredibly stupid: anyone can get around the TouchID fingerprint sensor with a laser printer and a bit of glue. If you ever get ahold of the German Defense Minister’s iPhone, the fingerprint sensor isn’t going to stop you.

This is a rare case where Apple are damned if they do, damned if they don’t. By not disabling the phone when the TouchID sensor is replaced, all iPhones are open to a gaping security hole that would send the Internet into a tizzy. By bricking each and every iPhone with a replacement TouchID sensor, Apple gets a customer support nightmare. That said, the $300 replacement cost for the TouchID sensor will get you a very nice Android phone that doesn’t have this problem.

Hope It’s Real: 3D Printing Houses With Bricks

You’ve just got to go with the hype on this one, because it’s obviously not ready for prime time yet. But a few days ago murmurs started circling the net that an Australian inventor had developed a robot capable of building complicated structure from brick all by itself.

bricklaying-robotBefore you go off your rocker… we’re definitely not calling this real. It’s a proof of concept at best, but that doesn’t prevent us from getting excited. How long have you been waiting for robots that can build entire structures on our behalf? We were excited at the prospect of extruding walls of concrete. But this is more like LEGO buildings in the real world. The beast cuts brick to length, conveys each brick along the telescoping arm, and butters them as it lays them in place. At least that’s what the rendered video after the break shows.

We’re hearing about this now because FastBrick Robotics, the company [Mark Pivac] founded and has spent ten years developing the Hadrian project at, was just sold to a company called DMY Capital Limited. Of course they’re going to want to get some press out of the sale.

There is an image of the brick feeder on an existing excavator that frankly looks photoshopped. And some real images like the one seen here and another of the “print head” holding some bricks. But it’s enough to think there’s potential here.

The idea is that the base of the robot is fixed with the arm long enough to reach any part of the structure being built. Precise positioning is achieved by a fixed marker in a different position from the robot. The head triangulates its position using laser range-finding with the marker (having said that we now assume there needs to be more than one marker).

So what do you think? Are we ever going to see this incredibly complicated bucket of awesome producing structures in our neighborhood which the Big Bad Wolf simply cannot blow down?

Continue reading “Hope It’s Real: 3D Printing Houses With Bricks”

Unbricking A Counterfeit FTDI Chip

If you haven’t been paying attention, FTDI, makers of one of the most popular USB to UART chips out there, really screwed up last October. They released a driver to Microsoft that would brick unauthorized clones of their chip by setting the USB PID pair to zero. This renders the chip unusable by any computer. That Windows driver has been fixed by now, but there’s probably still a good number of bricked FTDI chips out there. [Tony G] figured out how to fix it, and it only requires a few lines in the console of a proper OS.

The bricking Windows driver worked by setting the USB PID on fake chips to 0000. Luckily, there are ways to reprogram these chips. [Mark Lord] released a set of tools that will reset the USB PID. This unbricks the chip, fixing whatever device it’s attached to. It’s also a great reminder to either update or roll back your Windows drivers.

amazonfiretv

Amazon Fire TV Update Bricks Hacked Devices

The Amazon Fire TV is Amazon’s answer to all of the other streaming media devices on the market today. Amazon is reportedly selling these devices at cost, making very little off of the hardware sales. Instead, they are relying on the fact that most users will rent or purchase digital content on these boxes, and they can make more money in the long run this way. In fact, the device does not allow users to download content directly from the Google Play store, or even play media via USB disk. This makes it more likely that you will purchase content though Amazon’s own channels.

We’re hackers. We like to make things do what they were never intended to do. We like to add functionality. We want to customize, upgrade, and break our devices. It’s fun for us. It’s no surprise that hackers have been jail breaking these devices to see what else they are capable of. A side effect of these hacks is that content can be downloaded directly from Google Play. USB playback can also be enabled. This makes the device more useful to the consumer, but obviously is not in line with Amazon’s business strategy.

Amazon’s response to these hacks was to release a firmware update that will brick the device if it discovers that it has been rooted. It also will not allow a hacker to downgrade the firmware to an older version, since this would of course remove the root detection features.

This probably doesn’t come as a surprise to most of us. We’ve seen this type of thing for years with mobile phones. The iPhone has been locked to the Apple Store since the first generation, but the first iPhone was jailbroken just days after its initial release. Then there was the PlayStation 3 “downgrade” fiasco that resulted in hacks to restore the functionality. It seems that hackers and corporations are forever destined to disagree on who actually owns the hardware and what ownership really means. We’re locked in an epic game of cat and mouse, but usually the hackers seem to triumph in the end.

A Tale Of (un)bricking A $10k Microsoft Surface Unit

We’ve all had that sinking feeling as a piece of hardware stops responding and the nasty thought of “did I just brick this thing?” rockets to the front of our minds. [Florian Echtler] recently experienced this in extremis as his hacking on the University of Munich’s Microsoft Surface 2.0 left it unresponsive. He says this is an 8,000 Euro piece of hardware, which translates to around $10,000! Obviously it was his top priority to get the thing working again.

So what’s the first thing you should do if you get your hands on a piece of hardware like this? Try to run Linux on the thing, of course. And [Florian] managed to make that happen pretty easily (there’s a quick proof-of-concept video after the break). He took a Linux kernel drive written for a different purpose and altered it to interface with the MS Surface. After working out a few error message he packaged it and called to good. Some time later the department called him and asked if his Linux kernel work might have anything to do with the display being dead. Yikes.

He dug into the driver and found that a bug may have caused the firmware on the USB interface chip to be overwritten. The big problem being that they don’t just distribute the image for this chip. So he ended up having to dump what was left from the EEPROM and rebuild the header byte by byte.

Continue reading “A Tale Of (un)bricking A $10k Microsoft Surface Unit”

LEGO Pick And Place

[youtube=http://www.youtube.com/watch?v=YoXCn4Gh_HA&w=470]

Turn your volume down and take a look at the brick sorting robot in the video above. It’s built using LEGO and powered by four different NXT modules. It sorts differently colored bricks on the intake conveyor and places them on three output conveyors. The build is solid and was [Chris Shepherd’s] impetus for starting a blog. We appreciate the pneumatic tricks that he detailed in some of his earlier posts such as a compressor, pressure switch, and air tank system. His advice is “build, build, build” and that’s what you’d have to do to perfect a monster of this size and scope.