Announcing The 2025 Hackaday One Hertz Challenge

It’s about time! Or maybe it’s about time’s reciprocal: frequency. Whichever way you see it, Hackaday is pleased to announce, just this very second, the 2025 One Hertz Challenge over on Hackaday.io. If you’ve got a device that does something once per second, we’ve got the contest for you. And don’t delay, because the top three winners will each receive a $150 gift certificate from this contest’s sponsor: DigiKey.

What will you do once per second? And how will you do it? Therein lies the contest! We brainstormed up a few honorable mention categories to get your creative juices flowing.

  • Timelords: How precisely can you get that heartbeat? This category is for those who prefer to see a lot of zeroes after the decimal point.
  • Ridiculous: This category is for the least likely thing to do once per second. Accuracy is great, but absurdity is king here. Have Rube Goldberg dreams? Now you get to live them out.
  • Clockwork: It’s hard to mention time without thinking of timepieces. This category is for the clockmakers among you. If your clock ticks at a rate of one hertz, and you’re willing to show us the mechanism, you’re in.
  • Could Have Used a 555: We knew you were going to say it anyway, so we made it an honorable mention category. If your One Hertz project gets its timing from the venerable triple-five, it belongs here.

We love contests with silly constraints, because you all tend to rise to the challenge. At the same time, the door is wide open to your creativity. To enter, all you have to do is document your project over on Hackaday.io and pull down the “Contests” tab to One Hertz to enter. New projects are awesome, but if you’ve got an oldie-but-goodie, you can enter it as well. (Heck, maybe use this contest as your inspiration to spruce it up a bit?)

Time waits for no one, and you have until August 19th at 9:00 AM Pacific time to get your entry in. We can’t wait to see what you come up with.

Climate Change May Make Days Longer

For those who say there’s never enough time in a day, your wish for more time is getting granted, if ever so slightly. Scientists have now found a new source of our days getting longer — climate change.

You may have already been aware that the length of the day on Earth has been getting longer over time due to the drag exerted on our planet by our friendly neighborhood Moon. Many other factors come into play though, including the Earth’s own mass distribution. As the Earth warms and polar caps melt, the water redistributes to the Earth’s equator causing it to slow more rapidly.

In the worst-case scenario, RCP8.5, it would result in climate-related effects to planetary rotational velocity even larger than those caused by lunar tides. Under that scenario, the earth would probably be a less pleasant place to live in many other ways, but at least you’d have a little more time in your day.

While we’re talking about time, we wonder what ever happened to getting rid of Daylight Savings in the US? If you long for a simpler time, perhaps you should take up repairing mechanical watches and clocks?

Billion Year Clock Is LEGO Genius Or Madness

If you are a fan of LEGO bricks or Rube Goldberg, you should have a look at [Brick Technology’s] billion-year LEGO clock. Obviously, it hasn’t been tested for a billion years, and we wonder if ABS would last that long, but the video below is still worth watching.

Even if you aren’t a LEGO fan, the demonstration of a pendulum clock and escapement is worth something and really shows the practical side of things. Of course, making a pendulum clock that keeps time isn’t anything magic — people have been doing that for centuries. But then more and more elements join to keep track of more time.

You might wonder how the pendulum keeps going for a billion years. Well, honestly, it can’t. But a solar panel charges a battery that rewinds the clock when the drive weight reaches the bottom. We imagine the solar cell and battery would be maintenance items if you expected the billion-year life cycle.

Some will ask why, but we get it. If you must explain why you build everything you do with LEGO, you are doing it wrong. The clock even keeps track of the galaxy’s rotation which, apparently, completes every 230 million solar years.

We’d be impressed with this clock even if it weren’t made with LEGO. Sure, it isn’t as posh as the fancy clock in Denmark. But it does work longer — at least, in theory — than most other LEGO clocks we’ve seen.

Continue reading “Billion Year Clock Is LEGO Genius Or Madness”

Why Pendulums Sync Up, And Other Mysteries Explained

If you’ve ever seen fireflies flashing together at night, you’ve witnessed the glory of synchronisation. In a new video, [Veritasium] examines some of the mechanisms in nature that help create order out of chaos. 

The story begins back in 1665, when [Christiaan Huygens] discovered that two pendulum clocks hanging from the same wooden beam would spontaneously synchronise over a period of time. The same principle is then demonstrated with metronomes – an experiment readily recreated in the home. Other systems that show this same eerie coordiation are then explored – from tidally locked moons orbiting around planets (like ours!), to chemical oscillators discovered by Soviet scientists during the cold war. There’s also a great explanation of the problems faced by the London Millennium Bridge, which swayed wildly under heavy foot traffic as it induced pedestrians to walk in sync.

Overall, it’s a look at some of the action behind the scenes that ties seemingly independent systems together. Learning about such things can prove useful too – it might even help you solve real world problems in your machine shop! Video after the break.

Continue reading “Why Pendulums Sync Up, And Other Mysteries Explained”

A Discrete Logic Word Clock

Self-acclaimed computer nerd [Kevin Koster] was tired of designing new TTL-logic clocks before finishing his previous designs. So he finally buckled down and completed this unique word clock, which uses only a handful of TTL chips. We can’t disagree with his friends who complained that they can’t read [Kev]’s handwriting, so perhaps this diagram will make it clearer.

Besides being a nice logic-only project, this will give an example to younger folks how much effort went into things which are so simple to implement today. We don’t see a Karnaugh map on the project page for sorting out the logic diodes driving the minutes LEDs. If [Kev] did it on the fly, as the rat’s nest of diodes on the schematic would suggest, we’re not sure whether to scold him or be impressed (he does redraw that logic very neatly on a separate sheet).

No worries about high speed wiring on this project. The main oscillator derives time from the 50 Hz AC transformer power supply, and outputs a reference clock signal of 16.7 mHz (not MHz), or once per minute. This is divided down to 3.3 mHz for the 5-minutes counter and again to 277 uHz for the hour counter. If you live in a 60 Hz power mains country, you’d have to modify the oscillator section. Or you could contact [Kev] on his site, as he is considering making this available as a kit worldwide. If you like word clocks, we’ve covered quite a few of them before, including this crazy-complex rear-projection one.

A Soyuz Space Clock Replica

If you like the retro look of old Soviet space hardware, then this replica of the model 774H Soyuz digital clock by [David Whitty] might be the perfect accessory for your desk. Forgoing the original stack of ten jam-packed circuit boards, [David] used an Arduino, a GPS receiver, and a handful of other common parts to create a convincing reproduction.

Out with the old, in with the new

He also made some functional changes to make it better suited as an ordinary clock for us earthbound folk. If you want to take on this project yourself, be prepared for some real metalwork. No 3D printing filament was harmed in building this project. It’s based on a pair of heavily modified Hammond cast aluminum enclosures, with over 1 kg of lead ballast added to give it the appropriate heft of the original. The GPS patch antenna is cleverly hidden on the rear interface connector, but a discrete hole for a USB connector gives away the secret that this isn’t an original. The software (free for non-commercial use) and build notes are available on his GitHub repository.

We covered [Ken Shirriff]’s fascinating dive into the guts of a real Soyuz digital clock back in January. If old space hardware is your thing, you should definitely check out this teardown by [CuriousMarc] of the 653B, the 1960s-era electro-mechanical predecessor to the 774H. Thanks to [CuriousMarc] for bringing this project to our attention.

Continue reading “A Soyuz Space Clock Replica”

Choosing The Right RTC For Your Project

When it comes to measuring time on microcontrollers, there’s plenty of ways to go about things. For most quick and dirty purposes, such as debounce delays or other wait states, merely counting away a few cycles of the main clock will serve the purpose.  Accurate to the tens of milliseconds, they get the average utility jobs done without too much fuss.

However, many projects are far more exacting in their requirements. When you’re building a clock, or a datalogger, or anything that relies on a stable sense of passing time for more than a few minutes, you’ll want a Real Time Clock. So called due to their nature of dealing with real time, as we humans tend to conceive it, these devices take it upon themselves to provide timekeeping services with a high degree of accuracy. We’ve compiled a guide to common parts and their potential applications so you can get things right the first time, every time.

Continue reading “Choosing The Right RTC For Your Project”