As a hacker, chances are that you have built a homopolar motor, as you only need three things: a battery, a magnet and some copper wire. There are zillions of videos on YouTube. This time we want to show you [Electric Experiments Roobert33]´s version. Definitely a fresh twist on the ubiquitous design that you see everywhere. His design is a bit more complicated, but the result makes the effort worthwhile.
The homopolar motor was the first electric motor ever built. Created Michael Faraday in 1821, it works because of the Lorentz force. This force acts on any current-carrying conductor that is immersed in a magnetic field which is perpendicular to the current. These motors really have no practical applications, but are an excellent way to learn basic aspects of electromagnetism.
In this setup, there are two conductive rings placed above a wooden base, connected to the battery terminals. Neodymium magnets are connected by a conductive rod that pivots in the center of the rings, closing the circuit and allowing the flow of current. Then the Lorentz force makes its magic and pushes the rod and magnets in a circular motion.
Very clean and well-edited work, as are other videos by [Electric Experiments Roobert33]. You may want to replicate this nice motor, or you can also make the simpler version to start experimenting.
It sounds like the name of a vehicle in some sci-fi tale, but that fiction is only a short leap from reality. Light Rider is, in fact, an electric motorcycle with a 3D printed frame that resembles an organic structure more than a machine.
Designed by the Airbus subsidiary [APWorks], the largely hollow frame was devised to minimize weight while maintaining its integrity and facilitating the integration of cables within the structure. The frame is printed by melting a sea aluminium alloy particles together into thousands of layers 30 microns thick. Overall, Light Rider’s frame weighs 30% less than similar bikes; its net weight — including motor — barely tips the scales at 35 kg. Its 6 kW motor is capable of propelling its rider to 45 km/h in three seconds with a top speed of 80 km/h, and a range of approximately 60 km — not too shabby for a prototype!
If have ever gone snowmobiling, you may have thought about how to revive that thrill in the more confined atmosphere of an urban environment — to say nothing of their utility. In anticipation of heavy snowfall over the winter in his hometown, [Ben] stripped the essence of the snowmobile down as an emergency vehicle and reshaped it into the Snow Bike.
This compact, winter transportation solution uses an e-bike controller, a chopped up ski, and a heavy snowblower track and a large RC plane motor for power all strapped onto a modified mountain bike frame. The motor mount is machined aluminum, the track rollers milled out of spare plastic — though they later had to be modified as they tended to get clogged by snow — and the front ski is simply bolted on using some 3″ square tubing.
Due to its small size the Snow Bike looks about as stable as a pocket bike, so perhaps some training tracks and or skis might help in deeper powder. [Ben] also notes that the present motor doesn’t have much power so the rider needs to keep it at full throttle to push through the snow. That said — seeing this thing smoothly cruising around in several inches of snow makes us wish we had one of our own.
If you’re anything like us, chances are pretty good you’ve got at least one underused piece of fitness gear cluttering up your place. Rather than admit defeat on that New Year’s Resolution purchase, why not harvest the guts and build an all-terrain hoverboard for a little outdoor fun?
The fitness machine in question for [MakeItExtreme]’s build was a discarded Crazy Fit vibration platform. We’re not sure we see the fitness benefits of the original machine, but there’s no doubt it yielded plenty of goodies. The motor and drive belt look stout, and the control board eventually made it into the hoverboard too. The custom steel frame was fabricated using some of [MakeItExtreme]’s DIY tools, which is what we’re used to seeing them build — check out their sand blaster and spot welder for examples. A couple of knobby tires in the center of the board let the rider balance (there’s no gyro in this version) and power is provided by a couple of 12 volt AGM batteries. Sadly, the motor was a line voltage unit, so an inverter was needed. But it was the only part that had to be purchased, making this a pretty complete junk pile build.
See the video after the break for build details and a few test rides. Looks like it can do 20 mph or so – pretty impressive.
[dmalhar] was digging around in his bins for motors and found one with missing brushes. Being resourceful (and not able to find another motor), he managed to tear apart a SATA cable and form the pins into brushes with just the right amount of spring. Yes, this looks like a cheap motor, but in the moment of necessity availability wins, and this hack is truly commendable. If he had used a paperclip, MacGyver would have been proud, but the SATA cable pins make us proud.
Normally the brushes of DC motors are made with a graphite or some other material which provides a small amount of resistance so that when the motor is spinning the brushes will provide a gradual shift of current from one commutator to the next. Also, the softness of the carbon makes the brush wear down instead of the commutator, and in large motors the brushes are replaceable. In cheap motors the engineers design the brush material around the expected lifetime of the product. In [dmalhar’s] case, the motor just got its lifetime extended by a while.
Want to really understand how something works? Make one yourself. That’s the approach that Reddit user [Oskarbjo] took with this neat electric motor build. He made the whole thing from scratch, using an Arduino, 3D printing, and ample quantities of wire to create a solenoid motor. This transforms the linear force of a solenoid, where a magnet is moved by a magnetic field, into rotary force. It’s rather like an internal combustion engine, but driven by electricity instead of explosions. Hopefully.
[Oskarbjo]’s engine seems to work, including a rather neat mechanism to detect the rotation of the shaft and relay that back to the controller. He hasn’t posted much detail in the build process, unfortunately, but did say that “If you’d want to build something similar I can probably help you out a bit, but half the fun is coming up with your own solutions.” Amen to that. We’ve seen a few neatsolenoidmotor builds, but this one wins points for starting from scratch. There is an Instagram video of the motor running after the break.
Motors are everywhere; DC motors, AC motors, steppers, and a host of others. In this article, I’m going to look beyond these common devices and search out more esoteric and unusual electronic actuators that might just find a place in one of your projects. In any case, their mechanisms are interesting in their own right! Join me after the break for a survey of piezo, magnetostrictive, magnetorheological, voice coils, galvonometers, and other devices. I’d love to hear about your favorite actuators and motors too, so please comment below!
Piezo actuators and motors
Piezoelectric materials sometimes seem magic. Apply a voltage to a piezoelectric material and it will move, as simple as that. The catch of course is that it doesn’t move very much. The piezoelectric device you’re probably most familiar with is the humble buzzer. You’d usually drive these with less than 10 volts. While a buzzer will produce a clearly audible sound you can’t really see it flexing (as it does shown above).
To gauge the motion of a buzzer I recently attempted to drive one with a 150 volt piezo driver, this resulted in a total deflection of around 0.1mm. Not very much by normal standards!
For some applications however resolution is of primary interest rather than range of travel. It is here that piezo actuators really shine. The poster-boy application of piezo actuators is perhaps the scanning probe microscope. These often require sub-nanometer accuracy (less than 1000th of 1000th of 1 millimeter) in order to visualize individual atoms. Piezo stacks are ideal here (though hackers have also used cheap buzzers!).
Sometimes though you need high precision over a larger range of travel. There are a number of piezo configurations that allow this. Notably Inchworm, “LEGS”, and slip-stick actuators.
The PiezoMotor LEGS actuator is shown to the above. As noted, Piezos only produce small (generally sub-millimeter) motion. Rather than using this motion directly, LEGS uses this motion to “walk” along a rod, pushing it back and forth. The rod is therefore moved, in tiny nanometer steps. However, piezos can move quickly (flexing thousands of times a second). And the LEGS (and similar Inchworm actuator) allows relatively quick, high force, and high resolution motion.
The tablecloth trick (yes this one’s fake, the kid is ok don’t worry. :))
Another type of long travel piezo actuator uses the “stick-slip phenomenon”. This is much like the tablecloth magic trick shown above. If you pull the cloth slowly there will be significant friction between the cloth and this crockery and they will be dragged along with the cloth. Pull it quickly and there will be less friction and the crockery will remain in place.
This difference between static and dynamic friction is exploited in stick-slip actuators. The basic mechanism is shown in the figure below.
When extending slowing a jaw rotates a screw, but if the piezo stack is compressed quickly the screw will not return. The screw can therefore be made to rotate. By inverting the process (extending quickly, then compressing slowly) the process is reversed and the screw is turned in the opposite direction. The neat thing about this configuration is that it retains much of the piezo’s original precision. Picomotors have resolutions of around 30 nanometer over a huge range of travel, typically 25mm, they’re typically used for optical focusing and alignment and can be picked up on eBay for 100 dollars or so. Oh and they can also be used to make music. Favorites include Stairway to Heaven, and not 1 but 2 versions of Still Alive (from Portal). Obligatory Imperial March demonstration is embedded here:
There are numerous other piezo configurations, but typically they are used to provide high force, high precision motion. I document a few more over on my blog.
Magnetostrictive actuators
Magnetostriction is the tendency of a material to change shape under a magnetic field. We’ve been talking about magnetostriction quite a lot lately. However much like piezos it can also be used for high precision motion. Unlike piezos they require relatively low voltages for operation and have found niche applications.
Magnetorheological motion
Magnetorheological (MR) fluids are pretty awesome! Much like ferrofluids, MR fluids respond to changes in magnetic field strength. However, unlike ferrofluids it’s their viscosity that changes.
This novel characteristic has found applications in a number of areas. In particularly the finishing of precise mirrors and lens used in semiconductor and astronomical applications. This method uses an electromagnet to change the viscosity of the slurry used to polish mirrors, removing imperfections. The Hubble telescope’s highly accurate mirrors were apparently finished using this technique (though hopefully not that mirror). You can purchase MR fluid in small quantities for a few hundred dollars.
Electrostatic motors
While magnetic motors operate through the attraction and repulsion of magnetic fields, electrostatic motors exploit the attraction and repulsion of electric change to produce motion. Electrostatic forces are orders or magnitude smaller that magnetic ones. However they do have niche applications. One such application is MEMS motors, tiny (often less than 0.01mm) sized nanofabricated motors. At these scales electromagnetic coils would be too large and specific power (power per unit volume) is more important than the magnitude of the overall force.
Voice coils and Galvanometers
The voice coil is your basic electromagnet. They’re commonly used in speakers, where an electromagnet in the cone reacts against a fixed magnet to produce motion. However voice coil like configurations are used for precise motion control elsewhere (for example to focus the lens of an optical drive, or position the read head of a hard disc drive). One of the cooler applications however is the mirror galvanometer. As the name implies the device was originally used to measure small currents. A current through a coil moved a rod to which a mirror was attached. A beam of light reflect off the mirror and on to a wall effectively created a very long pointer, amplifying the signal.
These days ammeters are far more sensitive of course, but the mirror galvanometer has found more entertaining applications:
High speed laser “galvos” are used to position a laser beam producing awesome light shows. Modern systems can position a laser beam at kilohertz speeds, rendering startling images. These systems are effectively high speed vector graphic like line drawing systems, resulting in a number of interesting algorithmic challenges. Marcan’s OpenLase framework provides a host of tools for solving these challenges effectively, and is well worth checking out.
In this article I’ve tried to highlight some interesting and lesser known techniques for creating motion in electronic systems. Most of these have niche scientific, industrial or artistic applications. But I hope they also also offer inspiration as you work on your own hacks! If you have a favorite, lesser known actuator or motor please comment below!