That’s Not A Junker… That’s My Generator

If you live somewhere prone to power outages, you might have thought about buying a generator. The problem is that small generators are cheap but — well — small. Big generators are expensive. [Jake von Slatt] had an idea. He has a “yard car” which we thought might be a junk car but, instead, it is an old car he uses to drive around his yard doing tasks. It has a winch and a welder. Now it has a big generator, too. You can follow the project in the three videos found below.

The project started with a scrap generator with a blown motor. Of course, the car has a motor so — in theory — pretty simple. Remove the generator from the motor and graft it to the car’s motor. But the details are what will kill you.

Continue reading “That’s Not A Junker… That’s My Generator”

3D Printed Engine Gets Carburetor

3D printed materials have come a long way in the last decade or so as printers have become more and more mainstream. Printers can use all kinds of different plastics with varying physical characteristics, and there are even printers now for other materials like concrete and metal. But even staying within the realm of the plastic printer can do a lot of jobs you might not expect. [Camden Bowen] recently 3D printed a single-piston engine which nearly worked, and is back with some improvements to it thanks to a small carburetor.

The carburetor itself isn’t 3D printed (although not from lack of trying) — it’s on loan from a weed eater, and is helping to solve a problem with the fuel-air mixture of his original design. Switching from butane to a liquid fuel also solved some problems as well, and using starter fluid also helped to kick off the ignition. Although it ran for a short period of time over several starts, the valve train suffered some damage with the exhaust valves melting in place to the head. This is actually a problem common to any internal combustion engine like this, especially if the fuel-air mixture is too lean, there’s incomplete combustion, the valves aren’t adjusted properly, or any number of other problems. In this case it seems to have been caused by improper engine timing.

It’s actually noteworthy though that the intake valves weren’t burned, meaning that if the engine can be tuned to allow for complete combustion before the exhaust gasses leave the combustion chamber, the plastic 3D printed head and valve train will likely survive much longer operational periods. We’ll certainly look forward to the next iteration of this engine build to see if that’s the case. If 3D printed piston engines aren’t your speed, though, take a look at this jet engine which uses a 3D printed compressor.

Continue reading “3D Printed Engine Gets Carburetor”

A Chess AI In Only 4K Of Memory

The first computer to ever beat a reigning chess world champion didn’t do so until 1996 when a supercomputer built by IBM beat Garry Kasparov. But anyone who wasn’t a chess Grandmaster could have been getting beaten by chess programs as early as 1979 when Atari released one of the first ever commercially-available chess video games for the Atari 2600. The game was called Video Chess and despite some quirky gameplay it is quite impressive that it was able to run on the limited Atari hardware at all as [Oscar] demonstrates.

The first steps of getting under the hood of this program involved looking into the mapping of the pieces and the board positions in memory. After analyzing some more of the gameplay, [Oscar] discovered that the game does not use trees and nodes to make decisions, likely due to the memory limitations, but rather simulates the entire game and then analyzes it to determine the next step. When the game detects that there are not many pieces left on the board it can actually increase the amount of analysis it does in order to corner the opposing king, and has some unique algorithms in place to handle things like castling, finishing the game, and determining valid movements.

Originally it was thought that this engine couldn’t fit in the 4K of ROM or work within the 128 bytes of system memory, and that it was optimized for the system after first developing a game with some expanded capabilities. The game also has a reputation for making illegal moves in the higher difficulty settings although [Oscar] couldn’t reproduce these bugs. He also didn’t get into any of the tricks the game employed just to display all of the pieces on the screen. The AI in the Atari game was a feat for its time, but in the modern world the Stockfish open-source chess engine allows for a much more expanded gameplay experience.

It’s Opposite Day For This Novel Wankel Engine

The Wankel engine seems to pop up in surprising places every so often, only to disappear into the ether before someone ultimately resurrects it for a new application and swears to get it right this time. Ultimately they come across the same problems that other Wankels suffered from, namely poor fuel efficiency and issues with reliability. They do have a surprising power-to-weight ratio and a low parts count, though, which is why people keep returning to this well, although this time it seems like most of the problems might have been solved simply by turning the entire design inside out.

A traditional Wankel engine has a triangular-shaped rotor that rotates around a central shaft inside an oval-shaped housing. This creates three chambers which continually revolve around inside the engine as the rotor spins. The seals that separate the chambers are notoriously difficult to lubricate and maintain. Instead of using a rotor inside of a chamber, this design called the X-Engine essentially uses a chamber inside of a rotor, meaning that the combustion chamber and the seals stay in fixed locations instead of spinning around. This allows for much better lubrication of the engine and also much higher efficiency. By flipping the design on its head it is able to maintain a low moving parts count, high compression ratio, and small power-to-weight ratio all while improving reliability and performance and adding the ability to directly inject fuel rather than rely on carburetion or other less-ideal methods of fuel delivery that other Wankels require.

Astute internal combustion aficionados will note that this engine is still of a two-stroke design, and thus not likely to fully eliminate the emissions problems with Wankels in a way that is satisfactory to regulators of passenger vehicles. Instead, the company is focusing on military, commercial, and aerospace applications where weight is a key driver of design. We’ve seen time and time again how the Wankel fails to live up to its promises though, and we hope that finally someone has cracked the code on one that solves its key issues.

Jet Engine Powers Tea Kettle

While there are plenty of places around the world to get a great cup of tea, no one has quite burned it into their culture like those in the United Kingdom. While they don’t have the climate to grow the plants themselves, they at least have figured out the art of heating water extremely rapidly in purpose-built electric kettles while the rest of us wait to heat water on our stoves and microwaves. But that’s still not fast enough for some, like [Finlay Shellard], who just completed this jet-powered tea kettle.

[Finlay] took some inspiration cues and parts from another jet engine he had on hand that was powering his toaster. This is a pulse jet design, which is welded together from laser-cut pieces of sheet metal with guides welded in place to allow water to flow around the combustion chamber and exhaust. Pressurized water sits in a reservoir at the top of the engine, and when it is up to temperature, a valve allows it to flow to the engine to heat up. When it has passed the jet engine section, it passes a tea bag holder and then out of a spout at the end of the engine.

A few tests at 100 PSI had the hot tea exiting the engine in a non-linear fashion, so the pressure was reduced. The device now makes tea at incredibly fast speeds, with the only downsides being access to some sort of jet fuel, and also the need for a protective hearing device of some sort. For anyone attempting to do this themselves, take a look at this build which includes a turbocharger design for improved efficiency of the pulse jet itself.

Continue reading “Jet Engine Powers Tea Kettle”

The First Afghan Sports Car Has An Engine You Shouldn’t Mock

In the news today, Afghanistan has made its first sports car, and it’s a sleek and low-slung model with a throaty exhaust note that would get a second look on the Autobahn just as much as it does on the streets of Kabul. Making a modern sports car is an impressive achievement no matter where you do it, but it wouldn’t be something we’d share with you were it not for how the story is being reported. The general tone of Western reporting is focused not upon the car itself, but instead poking fun of it for using a Toyota engine also found in a Corolla.

Anyone who grew up during the Cold War will remember the rhetoric of the era with respect to technology. To paraphrase a little, our planes or rockets were based on the finest and latest high technology, we were told, while theirs were held together with string and sealing wax from the 1940s. This neglected the fairly obvious fact that Soviet probes were visiting all the planets, something they must have had some pretty good tech at their disposal to achieve. This was then explained as the product of their having stolen all our super-advanced Western tech, something we now know that our lot weren’t averse to either when the opportunity arose.

It’s this which is brought to mind by the mirth of the Western commentators at the Afghan car’s supposedly humble engine. It doesn’t matter what you think of the Afghan regime (and there’s plenty there to criticize), the car should be assessed on its merits. After all, it’s hardly as though the engine in question didn’t find its way into more than one sports car that Western commentators might find appealing.

Wow! You Could Have A (Tiny) V8!

If you grew up before high gas prices and strict emission control regulations, you probably had — or wanted — a car with a V8 engine. An engineering masterpiece created in France, it would define automotive power for the best part of a century. Of course, you can still get them, but the realities of our day make them a luxury. [Vlad] shows us his latest Christmas list addition: a fully-functioning but tiny V8 — the Toyan FS-V800 that has a displacement of two centiliters.

It runs on R/C nitro fuel and is claimed to be the world’s smallest production V8. You can buy the thing built or as a kit and we suggest to protect your street cred, you claim you bought the kit even if you go for the assembled version. The cylinder bores are 17 mm and 16 tiny valves regulate the flow. There are even tiny mufflers for the manifold exhaust. [Dennis] has a video of his operating that you can see below, and his YouTube channel has a lot of information on building the kit and some modifications, too.

Cooling? Water-cooled, of course. The manufacturer claims the engine can rev to 12,500 RPM and can produce over four horsepower. The total size would allow it to fit easily in a five inch cubical volume. You could build it into something, or just display it as a conversation piece. Be prepared for sticker shock, though. We hear the going price for these is about $1,500.

If you’re a bit short on cash or would rather just play with some pretend ponies, this impressive open source engine simulator might be just what you’re looking for.

Continue reading “Wow! You Could Have A (Tiny) V8!”