High-Altitude Ballooning Hack Chat

Join us on Wednesday at noon Pacific time for the high-altitude ballooning Hack Chat!

The Cope brothers are our hosts this week. Jeremy, a computer engineer, and Jason, a mechanical engineer, have recently caught the high-altitude ballooning (HAB) bug. In their initial flights they’ve racked up some successes and pushed the edge of space with interesting and varied missions. Their first flight just barely missed the 100,000 foot (30,000 meter) mark and carried a simple payload package of cameras and GPS instruments and allowed them to reach their goal of photographing the Earth’s curvature.

Flight 2 had a similar payload but managed to blow through the 100K foot altitude, capturing stunning video of the weather balloon breaking. Their most recent flight carried a more complex payload package, consisting of the usual camera and GPS but also a flight data recorder of their own devising, as well as a pair of particle detectors to measure the change in flux of subatomic particles with increasing altitude. That flight “only” reached 62,000 ft (19,000 meters) but managed to hitch a ride on the jet stream that nearly took the package out to sea.

The Cope brothers will be joining the Hack Chat to talk about the exciting field of DIY high-altitude ballooning and the challenges of getting a package halfway to space (depending on how that’s defined). Please join us as we discuss:

  • The basics of flight – balloons, rigging, payload protection, tracking, and recovery;
  • Getting started on the cheap;
  • Making a flight into a mission with interesting and innovative ideas for payload instrumentation;
  • Will hobbyist HABs ever break the Kármán Line? and
  • What’s in store for this year’s Global Space balloon Challenge?

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the High-Altitude Ballooning Hack Chat event page and we’ll put that in the queue for the Hack Chat discussion.

 

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 6, at noon, Pacific time. If time zones have got you down, we have a handy time zone converter.

join-hack-chatClick that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Raspberry Pi Is Up Up And Away

BACAR — Balloon Carrying Amateur Radio — is just what it sounds like. A high-altitude balloon carries experiments and communicates via amateur radio. [ZR6AIC] decided to fly a payload in a local BACAR experiment. The module would send its GPS position via the APRS network and also send a Morse code beacon every seven minutes. It also sends other data such as temperature, and has an optional camera fitted.

The hardware used was the ubiquitous Raspberry Pi along with an associated daughterboard for transmitting on the 2 meter ham band. An RTL dongle took care of the receive portion and another dongle provided GPS. A DS18B20 temperature sensor provides the temperature data.

Continue reading “Raspberry Pi Is Up Up And Away”

Project Loon Will Float LTE To Puerto Rico

Some of the biggest names in technology have offered their help in rebuilding Puerto Rico’s infrastructure. The newest name on the list? The X division of Alphabet, who want to help fill the huge communications gap using Project Loon, their high-altitude balloon network. It looks like X is going to get their wish, as they have just been granted license from the FCC to deploy LTE cell coverage to both Puerto Rico and the US Virgin Islands.

The plan is to launch 30 balloons that will act as a network of floating cell towers to radiate an LTE signal originating from the ground. This coverage would be a great boon to a devastated communications infrastructure, but it won’t be a cakewalk to implement. Some handsets of both major persuasions will require a temporary over-the-air update before they can use Project Loon’s network. For phones that can’t operate on Band 8, it won’t work at all. Even so, it’s a great start.

Now you would think that an emergency communications restoration plan like this would be met by all parties with open arms and a circle of pats on the back, but this solution requires a lot of cooperation. One of the major hurdles was to secure spectrum rights from some if not all of the incumbent wireless carriers. Miraculously, eight of them have agreed to hand over their bandwidth. Another issue is that the FCC license is only good for six months, although they would probably entertain an extension given the circumstances. Finally, the dual ownership of the Virgin Islands makes the situation even more complicated, as X must agree not to infringe upon the wireless coverage footprint of the British Virgin Islands.

Via r/Futurology

Don’t Miss Watching This Solar Eclipse High Altitude Balloon Online

[Dan Julio] let us know about an exciting project that he and his team are working on at the Solid State Depot Makerspace in Boulder: the Solar Eclipse High Altitude Balloon. Weighing in at 1 kg and bristling with a variety of cameras, the balloon aims to catch whatever images are able to be had during the solar eclipse. The balloon’s position should be trackable on the web during its flight, and some downloaded images should be available as well. Links for all of that are available from the project’s page.

High altitude balloons are getting more common as a platform for gathering data and doing experiments; an embedded data recorder for balloons was even an entry for the 2016 Hackaday Prize.

If all goes well and the balloon is able to be recovered, better images and video will follow. If not, then at least a post-mortem of what the team thinks went wrong will be posted. Launch time in Wyoming is approximately 10:40 am Mountain Time (UTC -07:00) Mountain Daylight Time (UTC -06:00) on Aug 21 2017, so set your alarm!

Living High-Altitude Balloon

High-altitude balloons are used to perform experiments in “near space” at 60,000-120,000 ft. (18000-36000m). However, conditions at such altitude are not particularly friendly and balloons have to compete with ultraviolet radiation, bad weather and the troubles of long distance communication. The trick is to send up a live entity to make repairs as needed. A group of students from Stanford University and Brown University repurposed nature in their solution. Enter Bioballoon: a living high-altitude research balloon.

Instead of using inorganic materials, the Stanford-Brown International Genetically Engineered Machine (iGEM) team designed microbes that grow the components required to build various tools and structures with the hope of making sustained space research feasible. Being made of living material, Bioballoon can be grown and re-grown with the same bacteria, lowering the cost of manufacturing and improving repeatability.

Bioballoon is engineered to be modular, with different strains of bacteria satisfying different requirements. One strain of bacteria has been modified to produce hydrogen in order to inflate the balloon while the balloon itself is made of a natural Kevlar-latex mix created by other cells. Additionally, the team is using Melanin, the molecule responsible for skin color and our personal UV protection to introduce native UV resistance into the balloon’s structure. And, while the team won’t be deploying a glider, they’ve designed biological thermometers and small molecule sensors that can be grown on the balloon’s surface. They don’t have any logging functionality yet, but these cellular hacks could amalgamate as a novel scientific instrument: cheap, light and durable.

Living things too organic for your taste? Don’t worry, we’ve got some balloons that won’t grow on you.

Continue reading “Living High-Altitude Balloon”

Mexican Highschoolers Launch 30 High Altitude Balloons

No matter whether you call them “picosatellites” or “high altitude balloons” or “spaceblimps”, launching your own electronics package into the air, collecting some high-altitude photos and data, and then picking the thing back up is a lot of fun. It’s also educational and inspirational. We’re guessing that 264 students from 30 high schools in Aguascalientes Mexico have new background screens on their laptops today thanks to the CatSat program (translated here by robots, and there’s also a video to check out below).

Continue reading “Mexican Highschoolers Launch 30 High Altitude Balloons”

New Record For Balloon: Duration Aloft

High-altitude balloon flights have become somewhat of a known quantity these days. Although it’s still a fun project that’ll bring your hackerspace together on a complex challenge, after the first balloon or two, everyone starts to wonder”what next?”. Higher? Faster? Further? Cheaper? More science? There are a variety of different challenges out there.

A group of Stanford students just bagged a new record, longest time in flight, with their SSI-41 mission. In addition to flying from coast to coast, on a track that went waaaay up into Canadian airspace, they logged 79 hours of flight time.

altvstimeThe secret? Val-Bal. A “valve ballast” gas venting valve and ballast dispenser system that kept the balloon from going too high (and popping) or dropping back down to earth. The balance seems to have worked nearly perfectly — check the altitude profile graph. We’d love to see more details about this system. If anyone out there on the team does a writeup, let us know?

There are as many interesting ways to get into high-altitude ballooning as there are hackers. We love the extreme economy of the Pico Space Balloon project, which has gone around the world (twice!) on a solar-powered party balloon. And we’ll give both the best-name and ridiculous-concept awards to the Tetroon. But for now, most time aloft goes to the Stanford team. Congrats!

[via the Bangor Daily News, if you can believe that]