See What You’re In For When Buying And Moving A Lathe

Sometimes, with patience and luck, one can score a sweet deal on machinery. But for tools that weigh many hundreds of pounds? Buying it is only the beginning of the story. [Ben Katz] recently got a lathe and shared a peek at what was involved in moving a small (but still roughly 800 pound) Clausing 4901 lathe into its new home and getting it operational.

The lathe had sat unused in a basement, but was ready for a new home.

Moving such a stout piece of equipment cannot simply be done by recruiting a few friends and remembering to lift with the legs. This kind of machinery cannot be moved and handled except with the help of other machines, so [Ben] and friends used an engine hoist with a heavy-duty dolly to get it out of the basement it was in, and into the bed of a pickup truck. Separating the lathe from its base helped, as did the fact that the basement had a ground-level egress door which meant no stairs needed to be involved.

One also has to consider the machine’s ultimate destination, because not all floors or locations can handle nearly a thousand pounds of lathe sitting on them. In [Ben]’s case, that also meant avoiding a section of floor with a maintenance trapdoor when moving the lathe into the house. Scouting and knowing these things ahead of time can be the difference between celebratory pizza and deep dish disaster. Pre-move preparation also includes ensuring everything can physically fit through the necessary doorways ahead of time; a task that, if ignored, will eventually explain itself.

With that all sorted out, [Ben] dives into cleaning things up, doing function checks, and in general getting the lathe up and running. He provides some fantastic photos and details of this process, including shots of the 70s-era documentation and part diagrams.

Watch the first chips fly in the short video embedded below. And should you be looking at getting a lathe of your own? Check out our very own buyer’s guide to lathe options.

Continue reading “See What You’re In For When Buying And Moving A Lathe”

A wooden table with a puzzle on top of it sits in an off white room with a light wood floor. A red chair sits behind the table and the slats of the rolled away tambour top are visible.

Tambour Table With A Puzzling Secret

Some people really like puzzles. [Simone Giertz] is one of these serious puzzle lovers and built a transforming table (YouTube) to let her easily switch between puzzles and more mundane tasks, like eating.

While there are commercial solutions out there for game tables with removable tops and simpler solutions like hinged lids, [Giertz] decided to “make it more complicated and over-engineered than that.” A tambour top that rolls out of the way makes this a unique piece of furniture already, but the second, puzzle table top that can be raised flush with the sides of the table really brings this to the next level.

If that wasn’t already enough, the brass handles on the table are also custom made. In grand maker tradition, [Giertz] listened to her inner MYOG (Make Your Own Gnome) and got a lathe to learn to make her own handles instead of just buying some off the shelf.

If you’re less enamored of puzzles, you may want to see how Jigsaw Puzzles are Defeated. If you’re worried about losing pieces, check out these 3D Printed Sliding Puzzles.

Continue reading “Tambour Table With A Puzzling Secret”

How To Achieve Knurling On A Flat Surface

Knurling is a popular way to finish handles of tools and other hardware, with a pattern of crossed lines rolled into metal to provide better grip and an attractive finish. It’s most commonly done on a lathe to round stock, but it can also be achieved on flat surfaces if you have the right tool. Of course, you can make one yourself.

The build is simple, and is based around by creating a special carrier out of a solid piece of steel. It’s a long bar has a space milled out to hold two wheels in the middle. A pair of off-the-shelf knurling wheels are then installed in the bar, with socket head bolts serving as axles.

With the tooling complete, it’s then a simple matter of installing the carrier bar in a lathe and running it back and forth over a flat workpiece. The workpiece is rolled back and forth to allow the wheels to do their work, while also being shifted horizontally to allow the entire flat surface to be worked over.

A nice knurled finish really can elevate the form and function of any tool or other piece of metal craftsmanship. We’ve explored how to create your own knurled knobs before, too.

Continue reading “How To Achieve Knurling On A Flat Surface”

Custom Lathe Tool Cuts Complex Oil Grooves

Oil grooves are used to lubricate the inside of a bearing, and can come in many forms — from a single hole that takes a few drops of oil, to helical patterns that distribute it over the entire internal surface. The ideal arrangement is a looping figure eight pattern similar to an oscilloscope Lissajous figure, but cutting these is a nightmare. That is, unless you’ve got the proper tool.

We figure [Machine Mechanic] must need to cut a lot of them, as they spent quite a bit of time perfecting this custom lathe attachment to automate the process. Through an assortment of clever linkages and a rod-turned-crank that was welded together in-situ, the device converts the rotational motion of the lathe into a reciprocating action that moves the cutting tool in and out of the bearing. Incidentally the business end of this gadget started life out as a bolt, before it was turned down and had a piece of tool steel brazed onto the end.

With a little adjustment, it seems like this device could also be used to carve decorative patterns on the outside of the workpiece. But even if this is the only trick it can pull off, we’re still impressed. This is a clever hack for a very specialized machine shop operation that most would assume you’d need a four-axis CNC to pull off.

Lathes seem at first like rather single purpose machines, we’re always pleased to discover strange and wonderful things being done with them, like this seemingly impossible-to-turn piece, and this combo wire EDM and lathe.

Continue reading “Custom Lathe Tool Cuts Complex Oil Grooves”

Junkbox Build Keeps Tesla Coils Perfectly Varnished

Admittedly, not a lot of people have a regular need to varnish coils. It’s mainly something that Tesla coil builders and other high-voltage experimenters are concerned with. But since that group probably constitutes a not insignificant fraction of the Hackaday audience, and because there are probably more applications for this homebrew coil varnishing setup, we figured it would be a good idea to share it.

For [Mads Barnkob], coil maintenance isn’t something to take lightly. If you check out his Kaizer Power Electronics channel on YouTube, you’ll see that he has quite a collection of large, powerful Tesla coils, some of which are used for demos and shows, and others that seem to be reserved mainly for blowing stuff up. To prevent one of his coils from joining the latter group, keeping the coat of insulating varnish on the secondary coil windings in tip-top condition is essential.

The setup seen in the video below helps with that tedious chore. Built entirely from scraps and junk bin parts, the low-speed, low-precision lathe can be set up to accommodate coils of all sizes. In use, the lathe turns the coil very slowly, allowing [Mads] to apply an even coat of varnish over the coil surface, and to keep it from sagging while it dries.

[Mads]’ setup is probably not great for coil winding as it is, but for coil maintenance, it’s just the thing. If your needs are more along the lines of a coil winder, we’ve got a fully automated winder that might work for you.

Continue reading “Junkbox Build Keeps Tesla Coils Perfectly Varnished”

Cut Just About Anything With This Combination Lathe And Wire EDM

They say that if you have a lathe, you have every other machine tool too. To some degree, that’s true — you can make almost anything on a lathe, including another lathe, and even parts best made on other machine tools can usually be made on a lathe in a pinch. But after seeing this lathe attachment for a DIY electric discharge machining tool, we might be inclined to see the EDM as the one machine tool to rule them all.

Now, we’ll admit that the job [BAXEDM] built this tool for might be a little contrived. He wanted to make some custom hex inserts for his Swiss Army knife, which seem like they’d have been pretty easy to make from hex bar stock in a conventional lathe. Then again, hardened steel is the kind of material that wire EDM was made for, and there seem to be many use cases for an attachment that can spin a workpiece against an EDM cutting wire.

That was really the trick of this build — spinning a part underwater. To accomplish this, [BAXEDM] built a platform to carry a bearing block that supports a standard ER-25 collet, with a bracket that holds a stepper clear of the water in the EDM cutting tank. There are plenty of 3D printed insulators too, to keep most of the attachment electrically isolated from the EDM current, plus exotic parts like ceramic bearings that won’t corrode under water. There were a ton of other considerations, too; [BAXEDM] goes through the long iterative design process in the video below, as well as taking his new tool for a literal spin starting at about the 27:00 mark.

If you’re intrigued by what EDM can accomplish — and who wouldn’t be? — but you need more background on the process, we’ve got you covered.

Continue reading “Cut Just About Anything With This Combination Lathe And Wire EDM”

Hackaday Links Column Banner

Hackaday Links: May 1, 2022

We start this week with news from Mars, because, let’s face it, the news from this planet isn’t all that much fun lately. But a couple of milestones were reached on the Red Planet, the first being the arrival of Perseverance at the ancient river delta it was sent there to explore. The rover certainly took the scenic route to get there, having covered 10.6 km over the last 424 sols to move to a position only about 3.5 km straight-line distance from where it landed. Granted, a lot of that extra driving was in support of the unexpectedly successful Ingenuity demonstration, plus taking time for a lot of pit stops along the way at interesting features. But the rover is now in place to examine sedimentary rocks most likely to harbor the fossil remains of ancient aquatic life — as opposed to the mainly igneous rocks it has studied along the crater floor so far. We’re looking forward to seeing what happens.

Continue reading “Hackaday Links: May 1, 2022”