Building A Pi-Powered LED Chess Board

If you live near Central Park or some other local chess hub, you’re likely never short of opponents for a good game. If you find yourself looking for a computer opponent, or you just prefer playing online, you might like this LED chessboard from [DIY Machines] instead.

At heart, it’s basically a regular chessboard with addressable LEDs of the WS2812B variety under each square. The lights are under the command of an Arduino Nano, which is also tasked with reading button inputs from the board’s side panel. The Nano is interfaced with a Raspberry Pi, which is the true brains of the operation. The Pi handles chess tasks—checking the validity of moves, acting as a computer opponent, and connecting online for games against other humans if so desired. Everything is wrapped up with 3D printed parts, making this an easy project to build for the average DIY maker.

The video tutorial does a great job of covering the design. It’s a relatively simple project at heart, but the presentation is great and it looks awfully fun to play with. We’ve featured some other great builds from [DIY Machines] before, too. Video after the break. Continue reading “Building A Pi-Powered LED Chess Board”

Classic LED Bubble Displays Ride Again

Hewlett-Packard used to make some pretty cool LED displays, many of which appeared in their iconic pocket calculators back in the 1970s and 1980s. [Upir] tracked down some of these classic bubble displays and used them with a microcontroller. We love the results!

The displays featured here, the HPDL-1414, aren’t quite what would have been found in an HP-35, of course. These displays have 16 segments for reasonably legible approximations of most of the ASCII character set. Also, these aren’t just the displays; rather, a pair of the bubble-topped displays, each with four characters, is mounted to a module that provides a serial interface. [Upir] found these modules online, but despite the HP logo on the PCB silkscreen, it’s not really clear who made them. The documentation was a bit thin, to say the least, but with a little translation help from Google, he figured out the serial parameters and the character encoding. The video below shows him putting these modules through their paces.

Unusually for [upir], who has made a name for himself hacking displays to do things they weren’t designed to do, he stuck with the stock character set baked into this module. We think it would be fun to get one of these modules and hack the firmware to provide alternative character sets or even get a few of the naked displays and build a custom interface. Sounds like a fun rainy-day project.

This reminded us of another HP display project we saw a while back. Or, roll your own displays.

Continue reading “Classic LED Bubble Displays Ride Again”

How Purdue Hackers Made A Big Sign That They’re Really Proud Of

Let’s say you’ve got a fun little organization that does things together under a collective branding or banner. Maybe you want to celebrate that fact with some visually appealing signage? Well, that’s pretty much how [Jack] of the Purdue Hackers felt, so he and the gang put together a sizable logo sign to advertise their makerspace.

[Jack] explains that The Sign, as it is known, embodies the spirit of the Purdue Hackers. Basically, it’s about making something cool and sharing it with the world. He then outlines how they came to develop a “shining monument” to their organization with the use of LEDs and 3D printed components. The blog post explains how the group began with small prototypes, before stepping up to build a larger version for display in their makerspace window. It also chronicles the twists and turns of the project, including budget snarls and PCB errors that threatened to derail everything.

Ultimately, though, the Purdue Hackers prevailed, and The Sign has been shining bright ever since. Files are on GitHub for the curious, because it’s all open source! Meanwhile, if you’ve been cooking up your own neat signage projects, don’t hesitate to drop us a line!

Small Volumetric Lamp Spins At 6000 RPM

Volumetric displays are simply cool. Throw some LEDs together, take advantage of persistence of vision, and you’ve really got something. [Nick Electronics] shows us how its done with his neat little volumetric lamp build.

The concept is simple. [Nick] built a little device to spin a little rectangular array of LEDs. A small motor in the base provides the requisite rotational motion at a speed of roughly 6000 rpm. To get power to the LEDs while they’re spinning, the build relies on wire coils for power transmission, instead of the more traditional technique of using slip rings.

The build doesn’t do anything particularly fancy—it just turns on the whole LED array and spins it. That’s why it’s a lamp, rather than any sort of special volumetric display. Still, the visual effect is nice. We’ve seen some other highly capable volumetric displays before, though. Video after the break.
Continue reading “Small Volumetric Lamp Spins At 6000 RPM”

The 1983 Clock Four Decades In The Making

In 1983, a 14-year-old [Will] saw an LED clock in The Sharper Image store. At $250, it stayed in the store. That was a lot of money back then, especially for most teenagers. But [Will] didn’t forget. After high school, he and a friend planned to build one from scratch. They worked out how they would do it and did a little prototyping, but never really finished. Well, they never really finished at the time. Because 33 years later, [Will] decided to finally put it together. Check it out in the video below.

[Will’s] learned a lot since his original design, plus we have tech today that would have seemed like magic in the late 1980s. But he wanted to stay true to the original design, so there’s no microcontroller or smart LEDs. Just binary counters and a lot of LEDs. There’s even a 555 doing duty as a reset timer.

Continue reading “The 1983 Clock Four Decades In The Making”

Fail Of The Week: The Case Of The Curiously Colored Streetlights

What color are the street lights in your town? While an unfortunate few still suffer under one of the awful colors offered by vapor discharge lamps, like the pink or orange of sodium or the greenish-white of mercury, most municipalities have moved to energy-saving LED streetlights, with a bright white light that’s generally superior in every way. Unless, of course, things go wrong and the lights start to mysteriously change colors.

If you’ve noticed this trend in your area, relax; [NanoPalomaki] has an in-depth and surprisingly interesting analysis of why LED streetlights are changing colors. After examining a few streetlights removed from service thanks to changing from white to purple, he discovered a simple explanation. White LEDs aren’t emitting white light directly; rather, the white light comes from phosphors coating the underlying LED, which emits a deep blue light. The defunct units all showed signs of phosphor degradation. In some cases, the phosphors seemed discolored, as if they experienced overheating or chemical changes. In other LEDs the phosphor layer was physically separated from the backing, exposing the underlying LEDs completely. The color of these damaged modules was significantly shifted toward the blue end of the spectrum, which was obviously why they were removed from service.

Now, a discolored LED here and there does not exactly constitute a streetlight emergency, but it’s happening to enough cities that people are starting to take notice. The obvious solution would be for municipalities to replace the dodgy units Even in the unlikely event that a city would get some compensation from the manufacturer, this seems like an expensive proposition. Luckily, [NanoPalomaki] tested a solution: he mixed a wideband phosphor into a UV-curable resin and painted it onto the lens of each defective LED in the fixture. Two coats seemed to do the trick.

We have to admit that we have a hard time visualizing a city employee painstakingly painting LEDs when swapping out a fixture would take an electrician a few minutes, but at least it’s an option. And, it’s something for hobbyists and homeowners faced with the problem of wonky white LEDs to keep in mind too.

Continue reading “Fail Of The Week: The Case Of The Curiously Colored Streetlights”

Witch’s Staff Build Is A Rad Glowing Costume Prop

Let’s say you’re going to a music festival. You could just take water, sunscreen, and a hat. Or, you could take a rad glowing witch’s staff to really draw some eyes and have some fun. [MZandtheRaspberryPi] recently undertook just such a build for a friend and we love how it turned out.

The concept was to build a staff or cane with a big glowing orb on top. The aim was to 3D print the top as a very thin part so that LEDs inside could glow through it. Eventually, after much trial and error, the right combination of design and printer settings made this idea work. A Pi Pico W was then employed as the brains of the operation, driving a number of through-hole Neopixel LEDs sourced from Adafruit.

Power was courtesy of a long cable running out of the cane and to a USB power bank in the wielder’s pocket. Eventually, it was revealed this wasn’t ideal for dancing with the staff. Thus, an upgrade came in the form of an Adafruit Feather microcontroller and a 2,000 mAh lithium-polymer battery tucked inside the orb. The Feather’s onboard hardware made managing the lithium cell a cinch, and there were no more long cables to worry about.

The result? A neat costume prop that looks fantastic. A bit of 3D printing and basic electronics is all you need these days to build fun glowing projects, and we always love to see them. Halloween is right around the corner — if you’re building something awesome for your costume, don’t hesitate to let us know!