Digital prototype of Zeusfilter 1.0

How To Stop Zeus From Toasting Your Pi

If you’ve ever lost gear to lightning or power spikes, you know what a pain they are. Out in rural Arkansas, where [vinthewrench] lives, the grid is more chaos than comfort – especially when storms hit. So, he dug into the problem after watching a cheap AC-DC module quite literally melt down. The full story, as always, begins with the power company’s helpful reclosers: lightning-induced surges, and grid switching transients. The result though: toasted boards, shorted transformers, and one very dead Raspberry Pi. [vinthewrench] wrote it all up – with decent warnings ahead. Take heed and don’t venture into things that could put your life in danger.

Back to the story. Standard surge suppressors? Forget it. Metal-oxide varistor (MOV)-based strips are fine for office laptops, but rural storms laugh at their 600 J limits. While effective and commonly used, MOVs are “self-sacrificing” and degrade over time with each surge event.

[vinthewrench] wanted something sturdier. Enter ZeusFilter 1.0 – a line-voltage filter stitched together from real parts: a slow-blow fuse, inrush-limiting thermistor, three-electrode gas discharge tube for lightning-class hits, beefy MOVs for mid-sized spikes, common-mode choke to kill EMI chatter, and safety caps to bleed off what’s left. Grounding done right, of course. The whole thing lives on a single-layer PCB, destined to sit upstream of a hardened PSU.

As one of his readers pointed out, though, spikes don’t always stop at the input. Sudden cut-offs on the primary can still throw nasty pulses into the secondary, especially with bargain-bin transformers and ‘mystery’ regulators. The reader reminded that counterfeit 7805s are infamous for failing short, dumping raw input into a supposedly safe 5 V rail. [vinthewrench] acknowledged this too, recalling how collapsing fields don’t just vanish politely – Lenz makes sure they kick back hard. And yes, when cheap silicon fails, it fails ugly: straight smoke-release mode.

In conclusion, we’re not particularly asking you to try this at home if you lack the proper knowledge. But if you have a high-voltage addiction, this home research is a good start to expand your knowledge of what is, in theory, possible.

What Happens When Lightning Strikes A Plane?

Lightning is a powerful force, one seemingly capable of great destruction in the right circumstances. It announces itself with a searing flash, followed by a deep rumble heard for miles around.

Intuitively, it might seem like a lightning strike would be disastrous for something like a plane flying at altitude. And yet, while damage is possible, more often than not—a plane will get through a lightning storm unscathed. Let’s explore the physics at play.

Continue reading “What Happens When Lightning Strikes A Plane?”

Neon Lamp Detects Lightning Strikes

For as mysterious, fascinating, and beautiful as lightning is at a distance, it’s not exactly a peaceful phenomenon up close. Not many things are built to withstand millions of volts and tens to hundreds of thousands of amps. Unsurprisingly, there’s a huge amount of effort put into lightning protection systems for equipment and resources that need to be outside where thunderstorms sometimes happen. Although most of us won’t be building personal substations, church steeples, or city-scale water towers in our backyards, we might have a few radio antennas up in the air, so it’s a good idea to have some lightning protection and possibly an alert system like [Joe] built.

Continue reading “Neon Lamp Detects Lightning Strikes”

Triggering Lightning And Safely Guiding It Using A Drone

Every year lightning strikes cause a lot of damage — with the high-voltage discharges being a major risk to buildings, infrastructure, and the continued existence of squishy bags of mostly salty water. While some ways exist to reduce their impact such as lightning rods, these passive systems can only be deployed in select locations and cannot prevent the build-up of the charge that leads up to the plasma discharge event. But the drone-based system recently tested by Japan’s NTT, the world’s fourth largest telecommunications company, could provide a more proactive solution.

The idea is pretty simple: fly a drone that is protected by a specially designed metal cage close to a thundercloud with a conductive tether leading back to the ground. By providing a very short path to ground, the built-up charge in said cloud will readily discharge into this cage and from there back to the ground.

To test this idea, NTT researchers took commercial drones fitted with such a protective cage and exposed them to artificial lightning. The drones turned out to be fine up to 150 kA which is five times more than natural lightning. Afterwards the full system was tested with a real thunderstorm, during which the drone took a hit and kept flying, although the protective cage partially melted.

Expanding on this experiment, NTT imagines that a system like this could protect cities and sensitive areas, and possibly even use and store the thus captured energy rather than just leading it to ground. While this latter idea would need some seriously effective charging technologies, the idea of proactively discharging thunderclouds is perhaps not so crazy. We would need to see someone run the numbers on the potential effectiveness, of course, but we are all in favor of (safe) lightning experiments like this.

If you’re wondering why channeling lightning away from critical infrastructure is such a big deal, you may want to read up on Apollo 12.

Boss Byproducts: Fulgurites Are Fossilized Lightning

So far in this series, we’ve talked about man-made byproducts — Fordite, which is built-up layers of cured car enamel, and Trinitite, which was created during the first nuclear bomb test.

A fulgurite pendant.
A lovely fulgurite pendant. Image via Etsy

But not all byproducts are man-made, and not all of them are basically untouchable. Some are created by Mother Nature, but are nonetheless dangerous. I’m talking about fulgurites, which can form whenever lightning discharges into the Earth.

It’s likely that even if you’ve seen a fulgurite, you likely had no idea what it was. So what are they, exactly? Basically, they are natural tubes of glass that are formed by a fusion of silica sand or rock during a lightning strike.

Much like Lichtenberg figures appear across wood, the resulting shape mimics the path of the lightning bolt as it discharged into the ground. And yes, people make jewelry out of fulgurites.

Continue reading “Boss Byproducts: Fulgurites Are Fossilized Lightning”

Hackaday Links Column Banner

Hackaday Links: April 23, 2023

Mark it on your calendars, folks — this is the week that the term RUD has entered the public lexicon. Sure, most of our community already knows the acronym for “rapid unscheduled disassembly,” and realizes its tongue-in-cheek nature. But given that the term has been used by Elon Musk and others to describe the ignominious end of the recent Starship test flight, it seems like RUD will catch on in the popular press. But while everyone’s attention was focused on the spectacular results of manually activating Starship’s flight termination system to end its by-then uncontrolled flight at a mere 39 km, perhaps the more interesting results of the launch were being seen in and around the launch pad on Boca Chica. That’s where a couple of hundred tons of pulverized reinforced concrete rained down, turned to slag and dust by the 33 Raptor engines on the booster. A hapless Dodge Caravan seemed to catch the worst of the collateral damage, but the real wrath of those engines was focused on the Orbital Launch Mount, which now has a huge crater under it.

Continue reading “Hackaday Links: April 23, 2023”

Turns Out, Lightning Can Strike Twice, With A Little Help

Few things are more impressive than a lighting strike. Lightning can carry millions of volts and while it can be amazing to watch, it is somewhat less amazing to be hit by lightning. Rockets and antennas often have complex lightning protection systems to try to coax the electricity to avoid striking where you don’t want it. However, a European consortium has announced they’ve used a very strong laser to redirect lightning in Switzerland. You can see a video below, but you might want to turn on the English closed captions.

Lightning accounts for as many as 24,000 deaths a year worldwide and untold amounts of property and equipment damage. Traditionally, your best bet for protection was not to be the tallest thing around. If the tallest thing around is a pointy metal rod in the ground, that’s even better. But this new technique could guide lightning to a specific ground point to have it avoid causing problems. Since lightning rods protect a circular area roughly the radius of their height, having a laser that can redirect beams to the area of a lightning rod would allow shorter rods to protect larger areas.

Continue reading “Turns Out, Lightning Can Strike Twice, With A Little Help”