Adding Assistive Technology To A Doorbell

The advent of affordable computing over the last few decades has certainly been a boon for many people with disabilities, making it easier to access things like text-to-speech technology, automation, or mobility devices, and even going as far as making it easier to work in general by making remote work possible. Some things still lag behind, though, like user interfaces that don’t take the colorblind into account, or appliances that only use an audio cue to signal to their users. This doorbell, for example, is one such device and [ydiaeresis] is adding features to it to help their mother with some hearing issues.

The first thing up for this off-the-shelf remote doorbell is a “brain transplant” since the built-in microcontroller couldn’t be identified. There are only a few signals on this board though so an ATtiny412 made for a suitable replacement. A logic analyzer was able to decode the signals being fed to the original microcontroller, and with that the push of the doorbell can be programmed to do whatever one likes, including integrating it with home automation systems or other assistive technology. In [ydiaeresis]’s case there’s an existing LED lighting system that illuminates whenever the phone rings.

Although it would be nice if these inexpensive electronics came with the adaptive features everyone might need from them, it’s often not too hard to add it in as was the case with this set of digital calipers. To go even further, some other common technology can be used to help those with disabilities like this hoverboard modified to help those with mobility issues.

Thanks to [buttim] for the tip!

Exploring The RP2350’s UART-Bootloader

The RP2350 has a few advantages over its predecessor, one of which is the ability to load firmware remotely via UART, as [Thomas Pfister] has documented on his blog and in the video below.

[Thomas] had a project that needed more PWM than the RP2350 could provide, and hit upon the idea of using a second RP2350 as a port expander. Now, one could hard-code this, but dealing with two sets of firmware on one board can be annoying. That’s where the UART bootloader comes in: it will allow [Thomas] to program the port-expander RP2350 using the main microcontroller. Thus he only has to worry about one firmware, speeding up development.

Continue reading “Exploring The RP2350’s UART-Bootloader”

First PCB With The Smallest MCU?

[Morten] works very fast. He has already designed, fabbed, populated, and tested a breakout board for the new tiniest microcontroller on the market, and he’s even made a video about it, embedded below.

You might have heard about this new TI ARM Cortex MO micro on these very pages, where we asked you what you’d do with this grain-of-rice-sized chunk of thinking sand. (The number one answer was “sneeze and lose it in the carpet”.)

From the video, it looks like [Morten] would design a breakout board using Kicad 8, populate it, get it blinking, and then use its I2C lines to make a simple digital thermometer demo. In the video, he shows how he worked with the part, from making a custom footprint to spending quite a while nudging it into place before soldering it carefully down.

But he nailed it on the first try, and honestly it doesn’t look nearly as intimidating as we’d feared, mostly because of the two-row layout of the balls. It actually looks easy enough to fan out. Because you can’t inspect the soldering work underneath the chip, he broke out all of the lines to a header to make it quick to check for shorts between those tiny little balls. Smart.

We love to see people trying out the newest hotness. Let us know down in the comments what new parts you’re trying out.

Continue reading “First PCB With The Smallest MCU?”

Shrinking Blinky As Far As Possible

Many of us know the basic Blink Arduino sketch, or have coded similar routines on other microcontrollers. Flashing an LED on and off—it doesn’t get much simpler than that. But how big should a blink sketch be? Or more importantly, how small could you get it? [Artful Bytes] decided to find out.

The specific challenge? “Write a program that runs on a microcontroller and blinks an LED. The ON and OFF times should be as close to 1000 ms as possible.” The challenge was undertaken using a NUCLEO-L432KC Cortex-M4 with 256 K of flash and 64 K of RAM.

We won’t spoil the full challenge, but it starts out with an incredibly inefficient AI & cloud solution. [Artful Bytes] then simplifies by switching to an RTOS approach, before slimming down further with C, assembly, and then machine code. The challenge was to shrink the microcontroller code as much as possible. However, you might notice the title of the video is “I Shrunk Blinky to 0 Bytes.” As it turns out, if you eliminate the digital code-running hardware entirely… you can still blink an LED with analog hardware. So, yes. 0 bytes is possible.

We’ve featured the world’s smallest blinky before, too, but in a physical sense rather than with regards to code size.

Continue reading “Shrinking Blinky As Far As Possible”

Metal Detector Built With Smartphone Interface

If you think of a metal detector, you’re probably thinking of a fairly simple device with a big coil and a piercing whine coming from a tinny speaker. [mircemk] has built a more modern adaptation. It’s a metal detector you can use with your smartphone instead.

The metal detector part of the project is fairly straightforward as far as these things go. It uses the pulse induction technique, where short pulses are fired through a coil to generate a magnetic field. Once the pulse ends, the coil is used to detect the decaying field as it spreads out. The field normally fades away in a set period of time. However, if there is metal in the vicinity, the time to decay changes, and by measuring this, it’s possible to detect the presence of metal.

In this build, an ESP32 is in charge of the show, generating the necessary pulses and detecting the resulting field. It’s paired with the usual support circuitry—an op-amp and a few transistors to drive the coil appropriately, and the usual smattering of passives. The ESP32 then picks up the signal from the coil and processes it, passing the results to a smartphone via Bluetooth.

The build is actually based on a design by [Neco Desarrollo], who presents more background and other variants for the curious. We’ve featured plenty of [mircemk]’s projects before, like this neat proximity sensor build. Continue reading “Metal Detector Built With Smartphone Interface”

A Modern Take On The Etch A Sketch

The Etch A Sketch is a classic children’s toy resembling a picture frame where artwork can be made by turning two knobs attached to a stylus inside the frame. The stylus scrapes off an aluminum powder, creating the image which can then be erased by turning the frame upside down and shaking it, adding the powder back to the display. It’s completely offline and requires no batteries, but in our modern world those two things seem to be more requirements than when the Etch A Sketch was first produced in the 1960s. Enter the Tilt-A-Sketch, a modern version of the classic toy.

Rather than use aluminum powder for the display, the Tilt A Sketch replaces it with an LED matrix and removes the stylus completely. There are no knobs on this device to control the path of the LED either; a inertial measurement unit is able to sense the direction that the toy is tilted while a microcontroller uses that input to light up a series of LEDs corresponding to the direction of tilt. There are a few buttons on the side of the device as well which allow the colors displayed by the LEDs to change, and similar to the original toy the display can be reset by shaking.

The Tilt-A-Sketch was built by [devitoal] as part of an art display which allows the visitors to create their own art. Housed in a laser-cut wooden enclosure the toy does a faithful job of recreating the original. Perhaps unsurprisingly, the Etch A Sketch is a popular platform for various projects that we’ve seen before including original toys modified with robotics to create the artwork and electronic recreations that use LED displays instead in a way similar to this project.

Continue reading “A Modern Take On The Etch A Sketch”

Laser Harp Sets The Tone

In many ways, living here in the future is quite exiting. We have access to the world’s information instantaneously and can get plenty of exciting tools and hardware delivered to our homes in ways that people in the past with only a Sears catalog could only dream of. Lasers are of course among the exciting hardware available, which can be purchased with extremely high power levels. Provided the proper safety precautions are taken, that can lead to some interesting builds like this laser harp which uses a 3W laser for its strings.

[Cybercraftics]’ musical instrument is using a single laser to generate seven harp strings, using a fast stepper motor to rotate a mirror to precise locations, generating the effect via persistence of vision. Although he originally planned to use one Arduino for this project, the precise timing needed to keep the strings in the right place was getting corrupted by adding MIDI and the other musical parts to the project, so he split those out to a second Arduino.

Although his first prototype worked, he did have to experiment with the sensors used to detect his hand position on the instrument quite a bit before getting good results. This is where the higher power laser came into play, as the lower-powered ones weren’t quite bright enough. He also uses a pair of white gloves which help illuminate a blocked laser. With most of the issues ironed out, [Cybercraftics] notes that there’s room for improvement but still has a working instrument that seems like a blast to play. If you’re still stuck in the past without easy access to lasers, though, it’s worth noting that there are plenty of other ways to build futuristic instruments as well.

Continue reading “Laser Harp Sets The Tone”