[rasteri] holding his HIDMan USB dongle

HIDman Brings Modern Input To Vintage PCs

Retro computing enthusiasts, rejoice! HIDman, [rasteri]’s latest open source creation, bridges the gap between modern USB input devices and vintage PCs, from the IBM 5150 to machines with PS/2 ports. Frustrated by the struggle to find functioning retro peripherals, [rasteri] developed HIDman as an affordable, compact, and plug-and-play solution that even non-techies can appreciate.

The heart of HIDman is the CH559 microcontroller, chosen for its dual USB host ports and an ideal balance of power and cost-efficiency. This chip enables HIDman’s versatility, supporting serial mice and various keyboard protocols. Building a custom parser for the tricky USB HID protocol posed challenges, but [rasteri]’s perseverance paid off, ensuring smooth communication between modern devices and older systems.

Design-wise, the project includes a thoughtful circuit board layout that fits snugly in its case, marrying functionality with aesthetics. Retro computing fans can jump in by building HIDman themselves using the files in the GitHub repository, or by opting for the ready-made unit.

Continue reading “HIDman Brings Modern Input To Vintage PCs”

A Tiny Chemistry Lab

While advances in modern technology have allowed average people access to tremendous computing power as well as novel tools like 3D printers and laser cutters for a bare minimum cost, around here we tend to overlook some of the areas that have taken advantage of these trends as well. Specifically in the area of chemistry, the accessibility of these things have opened up a wide range of possibilities for those immersed in this world, and [Marb’s Lab] shows us how to build a glucose-detection lab in an incredibly small form factor.

The key to the build is a set of three laser-cut acrylic sheets, which when sandwiched together provide a path for the fluid to flow as well as a chamber that will be monitored by electronic optical sensors. The fluid is pumped through the circuit by a custom-built syringe pump driven by a linear actuator, and when the chamber is filled the reaction can begin. In this case, if the fluid contains glucose it will turn blue, which is detected by the microcontroller’s sensors. The color value is then displayed on a small screen mounted to the PCB, allowing the experimenter to take quick readings.

Chemistry labs like this aren’t limited to one specific reaction, though. The acrylic plates are straightforward to laser cut, so other forms can be made quickly. [Marb’s Lab] also made the syringe pump a standalone system, so it can be quickly moved or duplicated for use in other experiments as well. If you want to take your chemistry lab to the extreme, you can even build your own mass spectrometer.

Continue reading “A Tiny Chemistry Lab”

Using The 555 For Everything

The 555 timer is one of the most versatile integrated circuits available. It can generate PWM signals, tones, and single-shot pulses. You can even put one in a bi-stable mode similar to a flip flop. All of these modes are available by only changing a few components outside of the IC itself. It’s also dirt cheap, so it finds its way into all kinds of applications its original inventors never imagined. There’s a bit of a trope around here as well that you ought not to use a microcontroller when one of these will do, and while it’s a bit of a played-out comment, it’s often more true than it seems. This video shows a few uncommon ways of using these circuits instead of putting a microcontroller to work.

After a brief overview of the internals of the hallowed 555, [Doctor Volt] walks us through some of its uses, starting with applications for digital inputs, including a debounce circuit and a toggle switch. From there, he moves on to demonstrating a circuit that can protect batteries from deep discharge, and a small change to that circuit can turn the 555 into a resetting fuse that can protect against short circuit events. Finally, the PWM capabilities of this small integrated circuit are put to work as an audio amplifier, although perhaps not one that would pass muster for the most devout audiophiles among us.

Even though it’s possible to offload a lot of the capabilities of a 555 onto a microcontroller, there’s certainly an opportunity to offload some things to the 555, even if your project still needs a microcontroller. However, offloading tasks like debounce or input latching to hardware rather than spending microcontroller cycles or pins can make a project more robust, both from reliability and software points of view. For some other useful circuits, some of which have been forgotten in the modern microcontroller age, it’s worth taking a look at some of these antique circuit books as well. While we are sure the 555 designers hoped it would be a big hit, no one imagined this giant one.

Continue reading “Using The 555 For Everything”

DIY 3D-Printed Arduino Self-Balancing Cube

Self-balancing devices present a unique blend of challenge and innovation. That’s how [mircemk]’s project caught our eye. While balancing cubes isn’t a new concept — Hackaday has published several over the years — [mircemk] didn’t fail to impress. This design features a 3D-printed cube that balances using reaction wheels. Utilizing gyroscopic sensors and accelerometers, the device adapts to shifts in weight, enabling it to maintain stability.

At its core, the project employs an Arduino Nano microcontroller and an MPU6050 gyroscope/accelerometer to ensure precise control. Adding nuts and bolts to the reaction wheels increases their weight, enhancing their impact on the cube’s balance. They don’t hold anything. They simply add weight. The construction involves multiple 3D printed components, each requiring several hours to produce, including the reaction wheels and various mount plates. After assembly, users can fine-tune the device via Bluetooth, allowing for a straightforward calibration process to set the balancing points.

If you want to see some earlier incarnations of this sort of thing, we covered other designs in 2010, 2013, and 2016. These always remind us of Stewart platforms, which are almost the same thing turned inside out.

Continue reading “DIY 3D-Printed Arduino Self-Balancing Cube”

Doing 1080p Video, Sort Of, On The STM32 Microcontroller

When you think 1080p video, you probably don’t think STM32 microcontroller. And yet! [Gabriel Cséfalvay] has pulled off just that through the creative use of on-chip peripherals. Sort of.

The build is based around the STM32L4P5—far from the hottest chip in the world. Depending on the exact part you pick, it offers 512 KB or 1 Mbyte of flash memory, 320 KB of SRAM, and runs at 120 MHz. Not bad, but not stellar.

Still, [Gabriel] was able to push 1080p at a sort of half resolution. Basically, the chip is generating a 1080p widescreen RGB VGA signal. However, to get around the limited RAM of the chip, [Gabriel] had to implement a hack—basically, every pixel is RAM rendered as 2×2 pixels to make up the full-sized display. At this stage, true 1080p looks achievable, but it’ll be a further challenge to properly fit it into memory.

Output hardware is minimal. One pin puts out the HSYNC signal, another handles VSYNC. The same pixel data is clocked out over R, G, and B signals, making all the pixels either white or black. Clocking out the data is handled by a nifty combination of the onboard DMA functionality and the OCTOSPI hardware. This enables the chip to hit the necessary data rate to generate such a high-resolution display.

There’s more work to be done, but it’s neat to see [Gabriel] get even this far with such limited hardware. We’ve seen others theorize similar feats on chips like the RP2040 in the Pi Pico, too. Video after the break.

Continue reading “Doing 1080p Video, Sort Of, On The STM32 Microcontroller”

Is That A Coaster? No, It’s An LED Matrix!

I’m sure you all love to see some colorful blinkenlights every now and then, and we are of course no exception. While these might look like coasters at a distance, do not be deceived! They’re actually [bitluni]’s latest project!

[bitluni]’s high-fidelity LED matrix started life as some 8×8 LED matrices lying on the shelf for 10 years taunting him – admit it, we’re all guilty of this – before he finally decided to make something with them. That idea took the form of a tileable display with the help of some magnets and pogo pins, which is certainly a very satisfying way to connect these oddly futuristic blinky coasters together.

It all starts with some schematics and a PCB. Because the CH32V208 has an annoying package to solder, [bitluni] opted to have the PCB fab do placement for him. Unfortunately, though, and like any good prototype, it needed a bodge! [bitluni] had accidentally mirrored a chip in the schematic, meaning he had to solder one of the SMD chips on upside-down, “dead bug mode”. Fortunately, the rest was seemingly more successful, because with a little 3D-printed case and some fancy programming, the tiny tiles came to life in all of their rainbow-barfing glory. Sure, the pogo pins were less reliable than desired, but [bitluni] has some ideas for a future version we’re very much looking forward to.

Video after the break.
Continue reading “Is That A Coaster? No, It’s An LED Matrix!”

PCB data sheet of a custom 4-bit microcontroller

Building A Microcontroller From Scratch: The B4 Thinker Project

[Marius Taciuc’s] latest endeavor, the B4 Thinker, offers a captivating glimpse into microcontroller architecture through a modular approach. This proof-of-concept project is meticulously documented, with a detailed, step-by-step guide to each component and its function.

Launched in 2014, the B4 Thinker project began with the ambitious goal of building a microcontroller from scratch. The resulting design features a modular CPU architecture, including a base motherboard that can be expanded with various functional modules, such as an 8-LED port card. This setup enables practical experimentation, such as writing simple assembly programs to control dynamic light patterns. Each instruction within this system requires four clock pulses to execute, and the modular design allows for ongoing development and troubleshooting.

Continue reading “Building A Microcontroller From Scratch: The B4 Thinker Project”