‘Upgrading’ A Microwave Oven To 20 KW

Whilst microwave plasmas are nothing new around here, we were curious to see what happens at 20x the power, and since YouTuber [Styropyro] had put out a new video, we couldn’t resist seeing where this was going. Clearly, as your bog standard microwave oven can only handle at most one kilowatt; the ‘oven’ needed a bit of an upgrade.

A 16 kW water-cooled magnetron. Why not over-drive it to 20 kW for fun?

Getting hold of bigger magnetrons is tricky, but as luck — or perhaps fate — would have it, a 16 kW, water-cooled beast became available on eBay thanks to a tip from a Discord user. It was odd but perhaps not surprising that this Hitatch H0915 magnetron was being sold as a ‘heat exchanger.’

[Styropyro] doesn’t go into much detail on how to supply the anode with its specified 16 kW at 9.5 kVDC, but the usual sketchy (well down-right terrifying) transformers in the background indicate that he had just what was needed kicking around the ‘shop. Obviously, since this is a [Styropyro] video, these sorts of practical things have been discussed before, so there is no need to waste precious time and get right on to blowing stuff up!

Some classic microwave tricks are shown, like boiling water in five seconds, cooking pickles (they really do scream at 20 kW) and the grape-induced plasma-in-a-jar. It was quite clear that at this power level, containing that angry-looking plasma was quite a challenge. If it was permitted to leak out for only a few seconds, it destroyed the mica waveguide cover and risked coupling into the magnetron and frying it. Many experiments followed, a lot of which seemed to involve the production of toxic brown-colored nitrogen dioxide fumes. It was definitely good to see him wearing a respirator for this reason alone!

Is it purple or is it indigo? Beauty is in the eye of the beholder!

The main star of the demonstration was the plasma-induced emissions of various metal elements, with the rare indigo and violet colors making an appearance once the right blend of materials was introduced into the glassware. Talking of glassware, we reckon he got through a whole kitchen’s worth. We lost count of the number of exploded beakers and smashed plates. Anyway, plasma science is fun science, but obviously, please don’t try any of this at home!

For those who didn’t take an ‘electron devices’ course at college, here’s a quick guide to how magnetrons work. Plasma physics is weird; here’s how the plasma grape experiment works. Finally, this old hack is a truly terrible idea. Really don’t do this.

Continue reading “‘Upgrading’ A Microwave Oven To 20 KW”

a microwave-oven with animated wave diagram

Dive Into The Microwaves, The Water’s Dipolar

When the microwave oven started to gain popularity in the 60s and 70s, supporters and critics alike predicted that it would usher in the end of cooking as we knew it. Obviously that never quite happened, but not because the technology didn’t work as intended. Even today, this versatile kitchen appliance seems to employ some magic to caffeinate or feed a growing hacker in no time flat. So, how exactly does this modern marvel work?

interior of a microwave-oven with a wave length overlay

That’s exactly what [Electronoob] set out to explain in his latest video. After previously taking apart a microwave and showing off the magnetron within he’s back with a clear explanation of how these devices work.

Maybe you have no idea, or have heard something vague about the water in the food wiggling in response to the microwaves. Do you know why microwaves and not some other part of the electromagnetic spectrum? Why the food spins on a platter? How the size of the oven relative to the wavelength affects the efficiency of its cooking? We didn’t, and think the video is a great primer on all of this and more.

Here at Hackaday, we sure love using and abusing microwave ovens. From upgrading them with voice control back in 2013, to turning them into UV curing chambers and mini foundries, to the limitless possibilities for the transformers and magnetrons that await us inside, we just can’t get enough. (this is our 82nd article tagged with microwave!)

Continue reading “Dive Into The Microwaves, The Water’s Dipolar”

Shop Exhaust Fan Salvaged From Broken Microwave

You don’t have to look hard to find a broken microwave. These ubiquitous kitchen appliances are so cheap that getting them repaired doesn’t make economical sense for most consumers, making them a common sight on trash day. But is it worth picking one of them up?

The [DuctTape Mechanic] certainly thinks so. In his latest video, he shows how the exhaust fan from a dead microwave can easily and cheaply be adapted to blow smoke and fumes out of your workshop. While it’s obviously not going to move as much air as some of the massive shop fans we’ve covered over the years, if you’re working in a small space like he is, it’s certainly enough to keep the nasty stuff moving in the right direction. Plus as an added bonus, it’s relatively quiet.

Now as you might expect the exact internal components of microwave ovens vary wildly, so there’s no guarantee your curbside score is going to have the same fan as this one. But the [DuctTape Mechanic] tries to give a relatively high-level overview of how to liberate the fan, interpret the circuit diagram on the label, and wire it up so you can plug it into the wall and control it with a simple switch. Similarly, how you actually mount the fan in your shop is probably going to be different, though we did particularly like how he attached his to the window using a pair of alligator clips cut from a frayed jumper cable.

Got a donor microwave but not in the market for a impromptu shop fan? No worries. We recently saw a dud microwave reborn as a professional looking UV curing chamber that would be the perfect partner for your resin 3D printer. Or perhaps you’d rather turn it into a desktop furnace capable of melting aluminum, copper, or bronze.

Continue reading “Shop Exhaust Fan Salvaged From Broken Microwave”

Modified Microwave Cures Resin Parts With Style

Once you make the leap to resin-based 3D printing, you’ll quickly find that putting parts out in the sun to cure isn’t always a viable solution. The best way to get consistent results is with a dedicated curing chamber that not only rotates the parts so they’re evenly exposed to the light, but allows you to dial in a specific curing time. A beeper that goes off when the part is done would be handy as well. Wait, this is starting to sound kind of familiar…

As you might expect, [Stynus] isn’t the first person to notice the similarities between an ideal UV curing machine and the lowly microwave oven. But his conversion is certainly one of the slickest we’ve ever seen. The final product doesn’t look like a hacked microwave so much as a purpose-built curing machine, thanks in large part to the fact that all of the original controls are still functional.

The big break there came when [Stynus] noticed that the control panel was powered by a one-time programmable PIC16C65B microcontroller. Swapping that out for the pin-compatible PIC16F877A opened up the possibility of writing custom firmware to interface with all the microwave’s original hardware, he just needed to reverse engineer how it was all wired up. It took some time to figure out how the limited pins on the microcontroller ran the LED display and read the buttons and switches at the same time, but we’d say the final result is more than worth the work.

With full control over the microwave’s hardware, all [Stynus] had to do was strip out all the scary high voltage bits (which were no longer functional to begin with) and install an array of UV LEDs. Now he can just toss a part on the plate, spin the dial to the desired curing time, and press a button. In the video below, you can see he’s even repurposed some of the buttons on the control panel to let him do things like set a new default “cook” time to EEPROM.

Compared to the more traditional fused deposition modeling (FDM) 3D printers, resin printing requires a lot of additional post-processing and equipment. You don’t necessarily have to gut your microwave just to cure your prints, but you’d be wise to fully consider your workflow will look like before pulling the trigger on that shiny new printer.

Continue reading “Modified Microwave Cures Resin Parts With Style”

A Magnetron Tear Down

Microwave ovens are everywhere, and at the heart of them is a magnetron — a device that creates microwaves. [DiodeGoneWild] tore one apart to show us what was inside and how it works. If you decide to do this yourself, be careful. The magnetron may have insulators made of beryllium oxide and inhaling dust from the insulator even one time can cause an incurable lung condition.

Luckily, you can’t get a lung problem from watching a video. In addition to just seeing the guts of the magnetron, there are also explanations about how everything works with some quick sketches to illustrate the points.

Continue reading “A Magnetron Tear Down”

Smelting aluminum in a microwave oven

A Different Use For Microwave Oven: Melting Aluminum

Microwave ovens are a treasure trove of useful parts: transformers, an HV capacitor, a piezo speaker, and a high torque motor, to name just a few. In a new twist, [Rulof Maker] strips all that out and uses just the metal case to make a furnace for melting aluminum, copper and bronze.

His heat source is a quartet of 110 volt, 450 watt quartz heating elements which he mounts inside in the back. To reduce heat loss, he lines the walls with ceramic fiber insulation. Unfortunately, that includes covering the inside of the window, so there’s no pressing your nose against the glass while you watch the aluminum pieces turn to liquid. If you’re going to try making one of these yourself then you may want to consider adding a fuse.

It does the job though. In around nine minutes he melts enough scrap aluminum in a stainless steel bowl to pour into a mold for a test piece. But don’t take our word for it, see for yourself in the video below.

If want more information on what useful parts are inside then check out this primer. Or you can leave the parts in and use the oven as is for melting lead, but keep a fire extinguisher handy.

Continue reading “A Different Use For Microwave Oven: Melting Aluminum”

microwave reactor

Ask Hackaday: The Many Uses Of Microwaves

When most think of a microwave, they think of that little magic box that you can heat food in really fast. An entire industry of frozen foods has sprung up from the invention of the household microwave oven, and it would be difficult to find a household without one. You might be surprised that microwave ovens, or reactors to be more accurate, can also be found in chemistry labs and industrial complexes throughout the world. They are used in organic synthesis – many equipped with devices to monitor the pressure and temperature while heating. Most people probably don’t know that most food production facilities use microwave-based moisture solids analyzers. And there’s even an industry that uses microwaves with acids to dissolve or digest samples quickly. In this article, we’re going to look beyond the typical magnetron / HV power supply / electronics and instead focus on some other peculiarities of microwave reactors than you might not know.

Single vs Multimode

The typical microwave oven in the millions of households across the world is known as multimode type. In these, the microwaves will take on typical wavelike behavior like we learned about in physics 101. They will develop constructive and destructive interference patterns, causing ‘hot spots’ in the cavity. A reader tipped us off to this example, where [Lenore] uses a popular Indian snack food to observe radiation distribution in a multimode microwave cavity. Because of this, you need some type of turntable to move the food around the cavity to help even out the cooking. You can avoid the use of a turn table with what is known as a mode stirrer. This is basically a metal ‘fan’ that helps to spread the microwaves throughout the cavity. They can often be found in industrial microwaves. Next time you’re in the 7-11, take a look in the top of the cavity, and you will likely see one.

Multimode microwaves also require an isolator to protect the magnetron from reflected energy. These work like a diode, and do not let any microwaves bounce back and hit the magnetron. It absorbs the reflected energy and turns it into heat. It’s important to note that all microwave energy must be absorbed in a multimode cavity. What is not absorbed by the food will be absorbed by the isolator. Eventually, all isolators will fail from the heat stress. Think about that next time you’re nuking a small amount of food with a thousand watts!

Single Mode microwaves are what you will find in chemistry and research labs. In these, the cavity is tuned to the frequency of the magnetron – 2.45GHz. This allows for a uniform microwave field. There is no interference, and therefore no hot or cold spots. The microwave field is completely homogenous. Because of this, there is no reflected energy, and no need for an isolator. These traits allow single mode microwaves to be much smaller than multimode, and usually of a much lower power as there is a 100% transfer of energy into the sample.  While most multimode microwaves are 1000+ watts, the typical single mode will be around 300 watts.

single vs multimode cavity

Power Measurement

Most microwave ovens only produce one power level. Power is measured and delivered by the amount of time the magnetron stays on. So if you were running something at 50% power for 1 minute, the magnetron would be on for a total of 30 seconds. You can measure the output power of any microwave by heating 1 liter of water at 100% power for 2 minutes. Multiply the difference in temperature by 35, and that is your power in watts.

There are other types of microwaves that control power by adjusting the current through the magnetron. This type of control is often utilized by moisture solids analyzers, where are more precise control is needed to keep samples from burning.

Have you used a microwave and an arduino for something other than cooking food? Let us know in the comments!

Thanks to [konnigito] for the tip!