Bug Zapper Counts And Serenades Its Victims

Not many creatures are as universally despised as mosquitoes, whether it’s the harmless kind that, at worst, makes you miss winter, or the more serious ones that can be a real threat to your health. A satisfying way to deal with them is to send them off with a bang using one of those racket-shaped high voltage metal mesh bug zappers. [lmu34] saw big potential for some additional gamification here, and decided to equip his zapper with a kill counter and matching sound effects.

The initial thought was that there has to be a way to detect when a mosquito hits the mesh, and use that to trigger further events — in [lmu34]’s case play a sound file and increment a counter. After taking the zapper apart and doing a bit of research, he put theory into practice using a Digispark Pro board containing an ATtiny167, the DFPlayer module for playing a set of WAV files, and an ambitious four digit 7-segment display to keep track of the “score”. A new 3d-printed cover provided enough space to house all the components, including a charging circuit as he swapped the original two AAA batteries with a rechargeable one, which gave a bit more power for the display.

Of course, with these operation voltages, it would be difficult to detect activity on the high voltage side more than once, so [lmu34] went with current sensing instead. He distinguishes between two different levels here and maps them as normal kill and monster kill for the big zaps respectively, playing different sounds for each. Have a look at the video after the break for some quick demonstration.

All in all, this is a delightfully absurd modification that almost screams for an ESP32 to enable multiplayer mode as next iteration. But if chasing mosquitoes with low-tech gadgets isn’t for you, there’s always lasers and good old torture, although those can’t be repurposed to do some hardware fault injections during the winter months then.

Continue reading “Bug Zapper Counts And Serenades Its Victims”

Bug Eliminator Zaps With A Laser

Mosquitoes tend to be seen as an almost universal negative, at least in the lives of humans. While they serve as a food source for plenty of other animals and may even pollinate some plants, they also carry diseases like malaria and Zika, not to mention the itchy bites. Various mosquito deterrents have been invented over the years to solve some of these problems, but one of the more interesting ones is this project by [Ildaron] which attempts to build a mosquito-tracking laser.

The device uses a neural learning algorithm to identify mosquitoes flying nearby. Once a mosquito is detected, a laser is aimed at it and activated in order to “thermally neutralize” the pest. The control system as well as the neural network and machine learning are hosted on a Raspberry Pi and Jetson Nano which give it plenty of computing power. The only major downside with this specific project is that the high-powered laser can be harmful to humans as well.

Ideally, a market for devices like these would bring the price down, perhaps even through the use of something like an ASIC specifically developed for these mosquito-targeting machines. In the meantime, [Ildaron] has made this project available for replication on his GitHub page. We have also seen similar builds before which are effective against non-flying insects, so it seems like only a matter of time before there is more widespread adoption — either that or Judgement day!

Continue reading “Bug Eliminator Zaps With A Laser”

Genetically Modified Mosquitos: Biohacking For Disease Prevention

Many years ago, I took a summer trip to the Maryland shore with some friends. One of my buddies and I got bored with playing football on the beach, so we decided to take a hike on one of the many trails back into the wooded area behind the dunes. At the trailhead we noticed a prominent sign, warning about the presence of “very aggressive mosquitos” and not to enter without first applying ample insect repellent. We scoffed at the warning as only young idiots could and soldiered on, bare-legged and confident that we’d be fine.

About three minutes into our hike, a small group came pelting down the trail in a panic. “It’s true! Turn back!” they shouted as they flew past us. Undeterred, or at least unwilling to appear that way to each other, we pressed on, only to discover a few minutes later that we were making a substantial blood sacrifice to the next generation of mosquitos on Assateague Island. We couldn’t bear more than a few seconds before turning tail and running back to the beach and jumping into the ocean to get rid of the last few dozen bloodsuckers.

I learned a valuable lesson from that experience, as well as developing a deep and abiding hatred of mosquitos. It turns out I’m in good company — pretty much everyone hates mosquitos, which are not just a nuisance but can be downright dangerous to be around. But if tests with genetically engineered mosquitos currently underway in Florida turn out well, we may be able to finally turn the tide against mosquito-borne diseases, simply by killing all the females before they ever reach adulthood.

Continue reading “Genetically Modified Mosquitos: Biohacking For Disease Prevention”

Laser Zap That Mosquito

When we first heard of [Ildar Rakhmatulin’s] plan to use OpenCV on a Raspberry Pi to detect mosquitos and then zap them with a 1 watt laser, we thought it was sort of humorous. However, the paper points out that 700,000 people die each year from mosquito bites — we didn’t verify that, but according to the article that’s twice the number of people murdered each year. So the little pests are pretty effective assassins.

It looks as though the machine has been built, at least in a test configuration. A galvanometer aims the death ray using mirrors, and with the low power and lossy mirrors the mosquitos can only be a small distance from the machine — about a foot.

Continue reading “Laser Zap That Mosquito”

Killing Mosquitoes With Cardi B

Keeping a bird bath or a pond in your yard is a great way to add ambiance and style, but both of these things can be a haven for mosquitoes. Popular methods of getting rid of them are often with harsh pesticides, but [Shane] has brought us a more environmentally-friendly way of taking care of these disease-carrying insects by looping a Cardi B playlist underwater, killing the mosquito larvae.

While the build does include some other favorites such as “Baby Shark” and would probably work with any song (or audio of sufficient volume) the build is still pretty interesting. It’s based on a 555 timer circuit which powered an ultrasonic sound gun, but was repurposed for this build. The ultrasonic modules were replaced with piezo modules which were waterproofed with silicone. The sound produced vibrates at a frequency which resonates with the mosquito larvae and is fatal to them. [Shane] put the build into a small boat which can be floated in any pond, bird bath, horse trough, or water feature.

The major caveat to this build is that it may be damaging to other beneficial animals such as fish or frogs, so he suggests limiting its use to uninhabited stagnant water. Either way, though, it’s a pretty unique way of taking care of a mosquito problem not unlike another build which takes care of these insects in water a slightly different way.

Continue reading “Killing Mosquitoes With Cardi B”

Cheap And Effective Mosquito Trap Looks Like A Disco

Words cannot quite articulate the collective loathing humankind has for mosquitoes, and rightfully so! These parasite peddling, blood sucking little critters are responsible for a great deal of human suffering. Mosquito-borne diseases such as malaria still account for a significant proportion of human mortality, especially in under-developed parts of the world . So it’s no wonder that people try to reduce their numbers; see this latest $40 mosquito trap by [jacobsk]. (Video, embedded below.)

The idea is critically simple, opening up the potential for widespread deployment. The base and body of the trap are made out of three five-gallon buckets with a mini desk fan sandwiched in between, providing suction into the main trap bin. An opening is cut in the top bucket as a point of entry, and an old school incandescent blacklight is mounted in the centre, with just enough IR and UV output to entice these little vermin, who will definitely regret mistaking it for a black-light rave.

[jacobsk] also does a very good job of showing every step of its construction in his videos. Whilst this solution is purposefully low tech, check out this admittedly overcooked way of killing mosquitoes, with a laser turret.

Continue reading “Cheap And Effective Mosquito Trap Looks Like A Disco”

Obstacle Avoidance For Drones, Learned From Mosquitoes

Our understanding of the sensory capabilities of animals has a lot of blanks, and often new discoveries serve as inspiration for new technology. Researchers from the University of Leeds and the Royal Veterinary College have found that mosquitos can navigate in complete darkness by detecting the subtle changes in the air flow created when they fly close to obstacles. They then used this knowledge to build a simple but effective sensor for use on drones.

Extremely sensitive receptors at the base of the antennae on mosquitoes’ heads, called the Johnston’s organ, allow them to sense these tiny changes in airflow. Using fluid dynamics simulations based on high speed photography, the researchers found that the largest changes in airflow occur over the mosquito’s head, which means the receptors are in exactly the right place. From their data, scientists predict that mosquitos could possibly detect surfaces at a distance of more than 20 wing lengths. Considering how far 20 arm lengths is for us, that’s pretty impressive. If you can get past the paywall, you can read the full article from the Science journal.

Using their newfound knowledge, the researchers equipped a small drone with probe tubes connected to differential pressure sensors. Using these sensors the drone was able to effectively detect when it got close to the wall or floor, and avoid a collision. The sensors also require very little computational power because it’s only a basic threshold value. Check out the video after the break.

Although this sensing method might not replace ultrasonic or time-of-flight sensors for drones, it does show that there is still a lot we can learn from nature, and that simpler is usually better. We’ve already seen simple insect-inspired navigation for drone swarms, as well as an optical navigation device for humans that works without satellites and only requires a view of the sky. Thanks for the tip [Qes]! Continue reading “Obstacle Avoidance For Drones, Learned From Mosquitoes”