Making Vintage Computing Easy, The Hard Way

If you want to not take for granted how easy and seamless computers have become, take up vintage computing as a hobby. If you venture down the retro path, you’ll quickly question how anyone ever got any useful work done with computers, and the farther back you go in computer history, the more difficult everything seems to become.

Case in point: how do you easily transfer files between a home-brew PC/XT and your modern desktop? Back in the day we did it with null modem cables or by sneaker-netting stacks of floppies, but [Scott M. Baker] found another way — putting a Raspberry Pi on the ISA bus as a virtual floppy drive. The heart of the ISA card is an IDT7130, a 1-kb RAM chip that allows simultaneous asynchronous access over dual ports. One port talks to the ISA bus and the other talks to the GPIO of the Pi, after level-shifting to make everything voltage compatible, of course. [Scott] wrote a driver for the card, plugged a Pi Zero W into the header pins, and threw a Python server together that makes local images available to the shared memory on the card. The upshot of this is that the retro machine thinks it has a floppy in it, but it’s actually a server. The video below has tons of detail and shows the card in action. Pretty slick.

[Scott]’s projects are always fun to check out, and he really seems to have the retro life dialed in. Whether it’s old jukebox hacks or a Unix-ish OS for Z80s, there’s plenty to learn. Although we’d like to see more about that PC/XT in the video; are those Nixies we spy along the front panel?

Continue reading “Making Vintage Computing Easy, The Hard Way”

PC-XT Emulator On ESP8266

Do you remember the simpler times when you had a DOS command line, a handful of commands, and you talked to the hardware through a few BIOS and DOS interrupts? Okay, maybe it was a little limited, but nostalgia doesn’t care. Now [mcuhacker] is working on bringing some of those memories back by getting a PC-XT emulator running on an ESP8266.

For the x86 CPU emulator, he ported Fake86 which is written in C, and created an Arduino IDE environment for it. The MS-DOS 3.3 bootdisk image is stored in flash and is accessed as the A: drive. There’s no keyboard yet but he has 640×200 CGA working with 80×25 characters on a 3.5″ TFT display with the help of a low pass filter circuit. In the video below he shows it booting to the point where it asks for the date.

Continue reading “PC-XT Emulator On ESP8266”

Hackaday Prize Entry: A PC-XT Clone Powered By AVR

There is a high probability that the device on which you are reading this comes somehow loosely under the broad definition of a PC. The familiar x86 architecture with peripheral standards has trounced all its competitors over the years, to the extent that it is only in the mobile and tablet space of personal computing that it has not become dominant.

The modern PC with its multi-core processor and 64-bit instruction set is a world away from its 16-bit ancestor from the early 1980s. Those early PCs were computers in the manner of the day, in which there were relatively few peripherals, and the microprocessor bus was exposed almost directly rather than through the abstractions and gatekeepers we’d expect to see today. The 8088 processor with an 8-bit external bus though is the primordial PC processor, and within reason you will find software written for DOS on those earliest IBM machines will often still run on your multiprocessor behemoth over a DOS-like layer on your present-day operating system. This 35-year-plus chain of mostly unbroken compatibility is both a remarkable feat of engineering and a millstone round the necks of modern PC hardware and OS developers.

Those early PCs have captured the attention of [esot.eric], who has come up with the interesting project of interfacing an AVR microcontroller to the 8088 system bus of one of those early PCs. Thus all those PC peripherals could be made to run under the control of something a little more up-to-date. When you consider that the 8088 ran at a modest 300KIPS and that the AVR is capable of running at a by comparison blisteringly fast 22MIPS, the idea was that it should be able to emulate an 8088 at the same speed as an original, if not faster. His progress makes for a long and fascinating read, so far he has accessed the PC’s 640KB of RAM reliably, talked to an ISA-bus parallel port, and made a CGA card produce colours and characters. Interestingly the AVR has the potential for speed enhancements not possible with an 8088, for example it can use its own internal UART with many fewer instructions than it would use to access the PC UART, and its internal Flash memory can contain the PC BIOS and read it a huge amount faster than a real BIOS ROM could be on real PC hardware.

In case you were wondering what use an 8088 PC could be put to, take a look at this impressive demo. Don’t have one yourself? Build one.