Two hands working a TekaSketch

TekaSketch: Where Etch A Sketch Meets Graph Theory

The Etch A Sketch was never supposed to meet a Raspberry Pi, a camera, or a mathematical algorithm, but here we are. [Tekavou]’s Teka-Cam and TekaSketch are a two-part hack that transforms real photos into quite stunning, line-drawn Etch A Sketch art. Where turning the knobs only results in wobbly doodles, this machine plots out every curve and contour better than your fingertips ever could.

Essentially, this is a software hack mixed with hardware: an RPi Zero W 2, a camera module, Inkplate 6, and rotary encoders. Snap a picture, and the image is conveyed to a Mac Mini M4 Pro, where Python takes over. It’s stripped to black and white, and the software creates a skeleton of all black areas. It identifies corner bridges, and unleashes a modified Chinese Postman Algorithm to stitch everything into one continuous SVG path. That file then drives the encoders, producing a drawing that looks like a human with infinite patience and zero caffeine jitters. Originally, the RPi did all the work, but it was getting too slow so the Mac was brought in.

It’s graph theory turned to art, playful and serious at the same time, and it delivers quite unique pieces. [Tekavou] is planning on improving with video support. A bit of love for his efforts might accellerate his endeavours. Let us know in the comments below!

Continue reading “TekaSketch: Where Etch A Sketch Meets Graph Theory”

Fully-Local AI Agent Runs On Raspberry Pi, With A Little Patience

[Simone]’s AI assistant, dubbed Max Headbox, is a wakeword-triggered local AI agent capable of following instructions and doing simple tasks. It’s an experiment in many ways, but also a great demonstration not only of what is possible with the kinds of open tools and hardware available to a modern hobbyist, but also a reminder of just how far some of these software tools have come in only a few short years.

Max Headbox is not just a local large language model (LLM) running on Pi hardware; the model is able to make tool calls in a loop, chaining them together to complete tasks. This means the system can break down a spoken instruction (for example, “find the weather report for today and email it to me”) into a series of steps to complete, utilizing software tools as needed throughout the process until the task is finished.

Continue reading “Fully-Local AI Agent Runs On Raspberry Pi, With A Little Patience”

The New Raspberry Pi 500+: Better Gaming With Less Soldering Required

When Raspberry Pi released the Pi 500, as essentially an RPi 5 integrated into a chiclet keyboard, there were rumors based on the empty spots on the PCB that a better version would be released soon. This turned out to be the case, with [Jeff Geerling] now taking the new RPi 500+ to bits for some experimentation and keyboard modding.

The 500’s case was not designed to be opened, but if you did, you’d find that there was space allocated for a Power-Over-Ethernet section as well as an M.2 slot, albeit with all of the footprints unpopulated. Some hacking later and enterprising folk found that soldering the appropriate parts on the PCB does in fact enable a working M.2 slot. What the 500+ thus does is basically do that soldering work for you, while sadly not offering a PoE feature yet without some DIY soldering.

Perhaps the most obvious change is the keyboard, which now uses short-travel mechanical switches – with RGB – inside an enclosure that is now fortunately easy to open, as you may want to put in a different NVMe drive at some point. Or, if you’re someone like [Jeff] you want to use this slot to install an M.2 to Oculink adapter for some external GPU action.

After some struggling with eGPU devices an AMD RX 7900 XT was put into action, with the AMD GPU drivers posing no challenge after a kernel recompile. Other than the Oculink cable preventing the case from closing and also losing the M.2 NVMe SSD option, it was a pretty useful mod to get some real gaming and LLM action going.

With the additions of a presoldered M.2 slot and a nicer keyboard, as well as 16 GB RAM, you have to decide whether the $200 asking price is worth it over the $90 RPi 500. In the case of [Jeff] his kids will have to make do with the RPi 500 for the foreseeable future, and the RPi 400 still finds regular use around his studio.

Continue reading “The New Raspberry Pi 500+: Better Gaming With Less Soldering Required”

Solar-Powered RC Boat Has Unlimited Range

For RC aircraft there are generally legal restrictions that require the craft to stay within line of sight of the operator, but an RC boat or car can in theory go as far as the signal will allow — provided there is ample telemetry to let the operator navigate. [Thingify] took this idea to the extreme with a remote-controlled boat that connects to a satellite internet service and adds solar panels for theoretically unlimited range, in more ways than one.

The platform for this boat is a small catamaran, originally outfitted with an electric powertrain running on a battery. Using a satellite internet connection not only allows [Thingify] to receive telemetry and pilot the craft with effectively unlimited range, but it’s a good enough signal to receive live video from one of a pair of cameras as well. At that point, the main limiting factor of the boat was the battery, so he added a pair of flexible panels on a custom aluminum frame paired with a maximum power point tracking charge controller to make sure the battery is topped off. He also configured it to use as much power as the panels bring in, keeping the battery fully charged and ready for nightfall where the boat will only maintain its position and wait for the sun to rise the next morning.

With this setup [Thingify] hopes to eventually circumnavigate Lake Alexandrina in Australia. Although he has a few boat design issues to work out first; on its maiden voyage the boat capsized due to its high center of gravity and sail-like solar panels. Still, it’s an improvement from the earlier version of the craft we saw at the beginning of the year, and we look forward to his next iteration and the successful voyage around this lake.

Continue reading “Solar-Powered RC Boat Has Unlimited Range”

A man holds a license plate in front of a black pickup (F-150 Lightning) tailgate. It is a novelty Georgia plate with the designation P00-5000. There are specks of black superimposed over the plate with a transparent sticker, giving it the appearance of digital mud in black.

A Deep Dive On Creepy Cameras

George Orwell might’ve predicted the surveillance state, but it’s still surprising how many entities took 1984 as a how-to manual instead of a cautionary tale. [Benn Jordan] decided to take a closer look at the creepy cameras invading our public spaces and how to circumvent them.

[Jordan] starts us off with an overview of how machine learning “AI” is used Automated License Plate Reader (ALPR) cameras and some of the history behind their usage in the United States. Basically, when you drive by one of these cameras, an ” image segmentation model or something similar” detects the license plate and then runs optical character recognition (OCR) on the plate contents. It will also catalog any bumper stickers with the make and model of the car for a pretty good guess of it being your vehicle, even if the OCR isn’t 100% on the exact plate sequence.

Where the video gets really interesting is when [Jordan] starts disassembling, building, and designing countermeasures to these systems. We get a teardown of a Motorola ALPR for in-vehicle use that is better at being closed hardware than it is at reading license plates, and [Jordan] uses a Raspberry Pi 5, a Halo AI board, and You Only Look Once (YOLO) recognition software to build a “computer vision system that’s much more accurate than anything on the market for law enforcement” for $250.

[Jordan] was able to develop a transparent sticker that renders a license plate unreadable to the ALPR but still plainly visible to a human observer. What’s interesting is that depending on the pattern, the system could read it as either an incorrect alphanumeric sequence or miss detecting the license plate entirely. It turns out, filtering all the rectangles in the world to find just license plates is a tricky problem if you’re a computer. You can find the code on his Github, if you want to take a gander.

You’ve probably heard about using IR LEDs to confuse security cameras, but what about yarn? If you’re looking for more artistic uses for AI image processing, how about this camera that only takes nudes or this one that generates a picture based on geographic data?

Continue reading “A Deep Dive On Creepy Cameras”

Pi Port Protection PCB

We’re used to interfaces such as I2C and one-wire as easy ways to hook up sensors and other peripherals to microcontrollers. While they’re fine within the confines of a small project, they do have a few limitations. [Vinnie] ran straight into those limitations while using a Raspberry Pi with agricultural sensors. The interfaces needed to work over long cable runs, and to be protected from ESD due to lightning strikes. The solution? A custom Pi interface board packing differential drivers and protection circuits aplenty.

The I2C connection is isolated using an ISO1541 bus isolator from TI, feeding a PCA9615DP differential I2C bus driver from NXP. 1-wire is handled by a Dallas DS2482S 1-wire bus master and an ESD protection diode network. Even the 5-volt power supply is delivered through an isolated module.

Whether or not you need this Raspberry Pi board, this is still an interesting project for anyone working with these interfaces. If you’re interested, we’ve looked at differential I2C in the past.

It’s A Pi, But It’s Not Quite A Raspberry Pi

When is a Raspberry Pi not a Raspberry Pi? Perhaps when it’s a Pi Pico-shaped board with an RP3A0 SoC from a Raspberry Pi Zero 2, made by [jonny12375].

Back in the early days of the Raspberry Pi, there was a offering from the Korean manufacturer Odroid, which wasn’t merely a similar machine with a different SoC, but a full clone in a smaller form factor featuring the same BCM2385 chip as the original. It was electrically and software-wise identically to the real thing, which we suspect didn’t go down very well with the Pi folks in Cambridge. The supply of Broadcom chips dried up, and ever since then the only way to get a real Pi has been from the official source. That’s not quite the end of the unofficial Pi story though, because a few hardy experimenters have made Pi clones like this one using chips desoldered from the real thing.

It’s the fruit of a reverse-engineering project to find the chip’s pinout, and it’s a proof of concept board rather than the intended final target of the work. The process involved painstakingly sanding down each layer of a Zero 2 board to reveal the traces and vias. The current board has a few quirks but it boots, making this an impressive piece of work on all counts. We’re looking forward to seeing whatever the final project will be.

If you’re hungry for more Pi-derived goodness, we’ve also seen one using the part form a Pi 3.