IBM Made A Sound Card? Who Knew!

Even in a field you think you know intimately, the Internet still has the power to surprise. Sound cards of the 1990s might not be everyone’s specialist subject, but since the CD-ROM business provided formative employment where this is being written, it’s safe to say that a lot of tech from that era is familiar. It’s a surprise then when along comes [DOS Storm] with a new one. The IBM Mwave was the computer giant’s offering back in the days when they were still pushing forward in the PC space, and sadly for them it turned out to be a commercial disaster.

The king of the sound cards in the ’90s was the SoundBlaster 16, which other manufacturers cloned directly. Not IBM of course, who brought their own Mwave DSP chip to the card, using it as both the sound card and the engine behind an on-board dial-up modem. This appears to have been its undoing, because aside from its notoriously flaky drivers, using both sound and modem at the same time just wasn’t a pleasant experience. To compound the problem, Big Blue resorted to trying to bury the problem with NDAs rather than releasing better drivers, so unsurprisingly it faded from view. Perhaps the reason it was unfamiliar here had something to do with it not being sold in Europe, but given that the chipset found its way into ’90s ThinkPads, we’d have expected to have seen something of it.

In the video below the break he introduces the card, and with quite some trouble gets it working. There are several demos of period games which sound a little scratchy, but we can’t judge from this whether they’d have sounded better on the Creative card. If you’d like to immerse yourself in the folly of ’90s multimedia, have a little bit of Hackaday scribe reminiscing.

Continue reading “IBM Made A Sound Card? Who Knew!”

Repairing Classic Sound Cards

Sound hardware has been built into PC motherboards for so long now it’s difficult to remember the days when a sound card was an expensive add-on peripheral. By the mid to late 1990s they were affordable and ubiquitous enough to be everywhere, but three decades later some of them are starting to fail. [Necroware] takes us through the repair of a couple of Creative Labs Sound Blaster 16s, which were the card to have back then.

The video below is a relaxed look at typical problems afflicting second-hand cards with uncertain pasts. There’s a broken PCB trace on the first one, which receives a neat repair. The second one has a lot more wrong with it though, and reveals some surprises. We would have found the dead 74 series chips, but we’re not so sure we’d have immediately suspected a resistor network as the culprit.

Watching these cards become sought-after in the 2020s is a little painful for those of us who were there at the time, because it’s certain we won’t be the only ones who cleared out a pile of old ISA cards back in the 2000s. If you find one today and don’t have an ISA slot, worry not, because you can still interface it via your LPC bus.

Continue reading “Repairing Classic Sound Cards”

WAV2VGM Plays Audio Via OPL3 Synthesis

Once upon a time, computers didn’t really have enough resources to play back high-quality audio. It took too much RAM and too many CPU cycles and it was just altogether too difficult. Instead, they relied upon synthesizing audio from basic instructions to make sounds and music. [caiannello] has taken advantage of this with the WAV2VGM project.

The basic concept is straightforward enough—you put a WAV audio file into the tool, and it spits out synthesis instructions for the classic OPL3 sound card. The Python script only works with 16-bit mono WAV files with a 44,100 Hz sample rate.

Amazingly, check the samples, and you’ll find the output is pretty recognizable. You can take a song with lyrics (like Still Alive from Portal), turn it into instructions for an OPL3, and it’s pretty intelligible. It sounds… glitchy and damaged, but it’s absolutely understandable.

It’s a fun little retro project that, admittedly, doesn’t have a lot of real applications. Still, if you’re making a Portal clone for an ancient machine with an OPL3 compatible sound chip, maybe this is the best way to do the theme song? If you’re working on exactly that, by some strange coincidence, be sure to let us know when you’re done!

Recreating The Quadrophonic Sound Of The 70s

For plenty of media center PCs, home theaters, and people with a simple TV and a decent audio system, the standard speaker setup now is 5.1 surround sound. Left and right speakers in the front and back, with a center speaker and a subwoofer. But the 5.1 setup wasn’t always the standard (and still isn’t the only standard); after stereo was adopted mid-century, audio engineers wanted more than just two channels and briefly attempted a four-channel system called quadrophonic sound. There’s still some media from the 70s that can be found that is built for this system, such as [Alan]’s collection of 8-track tapes. These tapes are getting along in years, so he built a quadrophonic 8-track replica to keep the experience alive.

The first thing needed for a replica system like this is digital quadrophonic audio files themselves. Since the format died in the late 70s, there’s not a lot available in modern times so [Alan] has a dedicated 8-track player connected to a four-channel audio-to-USB device to digitize his own collection of quadrophonic 8-track tapes. This process is destructive for the decades-old tapes so it is very much necessary.

With the audio files captured, he now needs something to play them back with. A Raspberry Pi is put to the task, but it needs a special sound card in order to play back the four channels simultaneously. To preserve the feel of an antique 8-track player he’s cannibalized parts from three broken players to keep the cassette loading mechanism and track indicator display along with four VU meters for each of the channels. A QR code reader inside the device reads a QR code on the replica 8-track cassettes when they are inserted which prompts the Pi to play the correct audio file, and a series of buttons along with a screen on the front can be used to fast forward, rewind and pause. A solenoid inside the device preserves the “clunk” sound typical of real 8-track players.

As a replica, this player goes to great lengths to preserve the essence of not only the 8-track era, but the brief quadrophonic frenzy of the early and mid 70s. There’s not a lot of activity around quadrophonic sound anymore, but 8-tracks are popular targets for builds and restorations, and a few that go beyond audio including this project that uses one for computer memory instead.

Continue reading “Recreating The Quadrophonic Sound Of The 70s”

PicoGUS: For All Your ISA Sound Card Needs

Sound cards used to be a big part of gaming machines in the 90s and 2000s but have largely gone extinct in the wake of powerful CPUs doing the sound themselves. Sound cards were expensive back then and, because the good ones weren’t very common, are expensive still for the retro gamer. But if you don’t need the real thing, [polpo] has you covered with his RP2040-based ISA sound card.

The PicoGUS, as he calls it, primarily serves to replace the Gravis UltraSound with modern components at a low cost. It uses the RP2040’s PIO to attach to an ISA bus and the RP2040’s dual-core power to synthesize the audio for its primary target, but also the AdLib (OPL2), CMS/Game Blaster and Tandy 3-Voice. [polpo] sells the PicoGUS on his Tindie store, but since it’s open source, you can of course just make your own.

Although “work-in-progress”, the PicoGUS is very useful to the right person and a perfect demonstration of how the RP2040’s PIO can be used to interface with almost any type of protocol.

Of couse, that’s not the only way to use the PIO, you can also create a CAN bus or even add another USB port.

Ask Hackaday: The Ten Dollar Digital Mixing Desk?

There comes a point in every engineer’s life at which they need a mixing desk, and for me that point is now. But the marketplace for a cheap small mixer just ain’t what it used to be. Where once there were bedroom musicians with a four-track cassette recorder if they were lucky, now everything’s on the computer. Lay down as many tracks as you like, edit and post-process them digitally without much need for a physical mixer, isn’t it great to be living in the future!

This means that those bedroom musicians no longer need cheap mixers, so the models I was looking for have disappeared. In their place are models aimed at podcasters and DJs. If I want a bunch of silly digital effects or a two-channel desk with a crossfader I can fill my boots, but for a conventional mixer I have to look somewhat upmarket. Around the three figure mark are several models, but I am both a cheapskate and an engineer. Surely I can come up with an alternative. Continue reading “Ask Hackaday: The Ten Dollar Digital Mixing Desk?”

A 386 motherboard with a custom ISA card plugged in

Emulate Any ISA Card With A Raspberry Pi And An FPGA

One of the reasons the IBM PC platform became the dominant standard for desktop PCs back in the mid-1980s was its open hardware design, based around what would later be called the ISA bus. Any manufacturer could design plug-in cards or even entire computers that were hardware and software compatible with the IBM PC. Although ISA has been obsolete for most purposes since the late 1990s, some ISA cards such as high-quality sound cards have become so popular among retrocomputing enthusiasts that they now fetch hundreds of dollars on eBay.

So what can you do if your favorite ISA card is not easily available? One option is to head over to [eigenco]’s GitHub page and check out his FrankenPiFPGA project. It contains a design for a simple ISA plug-in card that hooks up to a Cyclone IV FPGA and a Raspberry Pi. The FPGA connects to the ISA bus and implements its bus architecture, while the Pi communicates with the FPGA through its GPIO ports and emulates any card you want in software. [eigenco]’s current repository contains code for several sound cards as well as a hard drive and a serial mouse. The Pi’s multi-core architecture allows it to run several of these tasks at once while still keeping up the reasonably high data rate required by the ISA bus.

In the videos embedded below you can see [eigenco] demonstrating the system on a 386 motherboard that only has a VGA card to hook up a monitor. By emulating a hard drive and sound card on the Pi he is able to run a variety of classic DOS games with full sound effects and music. The sound cards currently supported include AdLib, 8-bit SoundBlaster, Gravis Ultrasound and Roland MT-32, but any card that’s documented well enough could be emulated.

This approach could also come in handy to replace other unobtanium hardware, like rare CD-ROM interfaces. Of course, you could take the concept to its logical extreme and simply implement an entire PC in an FPGA.

Continue reading “Emulate Any ISA Card With A Raspberry Pi And An FPGA”